
Pointers	II

Review
• A	pointer is	a	data	type	that	holds	the	address	of	
another	variable	in	memory.
• It	"points	to"	that	variable.

• Uses:
• Access	a	variable	from	more	than	one	place	in	your	
program	without	copying	it.
• Create	more	sophisticated	data	structures	(later).

Syntax
• Reference	operator:		&variable
• Returns	the	memory	address	of	variable.

• Declare	a	pointer:
• type *ptr_var;
• Creates	a	pointer	to	the	type	specified,	points	nowhere.
• type	can	be	int,	double,	string,	a	class	name,	...

• Make	a	pointer	point	to	a	certain	variable:
• ptr_var = &variable;
• Only	works	if	ptr_var is	declared	to	point	to	the	same	data	
type	as	what	variable is.

Examples
int x = 5;
double a = 6.4;

int *p1 = &x; // OK
int *p2 = &a; // illegal
double *p3 = &a; // OK

Syntax
• Two	ways	to	change	where	a	pointer	points.
• Use	reference	operator	to	point	a	pointer	to	a	specific	variable:
• ptr_var = &variable;

• Point	a	pointer	to	where	another	pointer	points	(assign	a	
pointer	to	another	pointer).
• ptr_var = other_pointer_var;

Examples
int x = 5, y = 10;

int *p1 = &x; // p1 points to x
int *p2 = &y; // p2 points to y
int *p3 = p2; // p3 also points to y

Nothing	magic	is	happening	with	the	last	line.		The	
statement	copies	the	value	of	p2	into	p3.		Since	the	value	
in	p2	is	an	address,	this	has	the	same	effect	as	making	p3	
point	to	y.

Syntax
• Using	the	name	of	a	pointer	variable	gives	you	a	memory	
address.
• To	access	the	value	at that	address,	use	the	dereference	
operator:	*
• The	reference	operator	(&)	and	dereference	operator	(*)	
are	inverses	of	each	other:
• &var takes	a	variable	and	makes	a	pointer	to	it	(an	address).
• *ptr_var takes	a	pointer	variable	and	gives	you	the	value	of	
the	variable	it	points	to.

• The	*ptr_var syntax	can	be	used	anywhere	a	regular	
variable	would	(print,	pass	to	functions,	return	from	
functions,	store	in	a	variable,	etc).

Examples
int x = 5, y = 10, z = 15;

int *p1 = &x, *p2 = &y, *p3 = &z;
cout << *p1 << *p2 << *p3 << endl;
*p1 = 8;
*p2 -= *p1;
cout << *p1 << *p2 << *p3 << endl;
p3 = p2;
*p2 = *p1;
cout << *p1 << *p2 << *p3 << endl;

Syntax
• Be	careful	of	the	difference	between
• ptr1 = ptr2;
• *ptr1 = *ptr2;
• The	first	one	changes	where	ptr1 points	to.

• The	second	one	changes	the	value	stored	in	the	variable	
that	ptr1 points	to.

Null	pointer
• There	is	a	special	address	you	can	use	when	you	want	a	
pointer	to	point	"nowhere:"	the	null	pointer.
• NULL or	nullptr.

• Good	rule	of	thumb	to	always	set	pointers	to	nullptr if	you	
can't	initialize	them	to	something	else.

• The	null	pointer	is	also	used	to	represent	a	"missing	value"	
for	a	pointer.

Examples

int *ptr = nullptr;
// do some stuff here
int x = call_some_big_function();
ptr = &x;

// different code:
int *ptr2 = nullptr;
// code here to possibly set ptr2
if (ptr2 == nullptr)

cout << "Missing value!";

Pointers	and	functions
void func(int *fptr) {

*fptr += 1;
}

int main() {
int x = 5;
int *ptr = &x;
func(ptr);

}

Pointers	and	functions
void func(int *fptr) {

int y = *fptr + 1;
fptr = &y;

}

int main() {
int x = 5;
int *ptr = &x;
func(ptr);

}

Pointers	and	functions
int* func() {

int y = 10;
int *fptr = &y;
return fptr;

}

int main() {
int *ptr = func();
cout << *ptr;

}

Vectors	of	pointers
vector<int*> vec;
int x = 5, y = 10, z = 15;
vec.push_back(&x);
vec.push_back(&y);
int *ptr1 = vec[0];
int *ptr2 = vec[1];
vec.push_back(ptr1);
*vec[0]++;
vec[1] = vec[2];
*vec[2] = z;
z++;

Reversing	a	vector	of	pointers

Pointers	to	objects
• Normally	we	use	the	dot	operator	to	access	the	
fields	and	methods	of	an	object:
• dog mydog;
• mydog.setAge(3);

• If	you	want	to	access	the	fields	and	methods	of	an	
object	through	a	pointer	to	that	object,	you	should	
use	the	arrow	operator:	->
• dog mydog;
• dog *dogptr = &mydog;

• mydog->setAge(3);

dog lassie;
lassie.setAge(4);
dog rowlf = lassie;
// copies all of lassie's fields to rowlf.
// The two dogs are still 100% separate.

dog* toto = &lassie;
toto->setAge(6);
// sets lassie's age (toto is just a pointer,
// not a separate standalone dog)

v

Use	dot	operator	when	
left	side	is	an	object.

Use	arrow	operator	when	
left	side	is	a	pointer to	an	
object.

