
• Warmup:	On	paper,	write	a	C++	function	that	
takes	a	single	int argument	(n)	and	returns	the	
product	of	all	the	integers	between	1	and	n.
– Use	a	for loop.

• (This	is	actually	a	useful	function	in	science	
and	mathematics,	called	the	factorial	
function.)

• Compare	with	your	neighbor	to	see	if	you	did	
it	the	same	way.		



Recursion



• On	paper,	write	a	C++	function	that	takes	a	
single	int argument	(n)	and	returns	the	
product	of	all	the	integers	between	1	and	n.
– Use	a	for loop.

• (This	is	actually	a	useful	function	in	science	
and	mathematics,	called	the	factorial	
function.)



long long fact(int n) {
long long answer = 1;
for (int x = 1; x <= n; x++) {
answer *= x;

}
return answer;

}



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	1	*	2	*	3	*	4	*	5
• Notice	that	each	product	involves	computing	
the	entire	product	on	the	row	above.



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	1	*	2	*	3	*	4	*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	1	*	2	*	3	*	4	*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	1	*	2	*	3	*	4	*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	1	*	2	*	3	*	4	*	5
• Let's	reformulate	the	definition	of	a	factorial	
to	take	advantage	of	this.



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=	1	*	2	*	3	*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=			fact(3)		*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	1	*	2	*	3
• fact(4)	=			fact(3)		*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1	*	2
• fact(3)	=	fact(2)	*	3
• fact(4)	=			fact(3)		*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	1 *	2
• fact(3)	=	fact(2)	*	3
• fact(4)	=			fact(3)		*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	fact(1) *	2
• fact(3)	=	fact(2)	*	3
• fact(4)	=			fact(3)		*	4
• fact(5)	=	 fact(4)					*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	fact(1)	*	2
• fact(3)	=	fact(2)	*	3
• fact(4)	=	fact(3)	*	4
• fact(5)	=	fact(4)	*	5



• Let's	look	at	this	problem	a	different	way:
• fact(1)	=	1
• fact(2)	=	fact(1)	*	2
• fact(3)	=	fact(2)	*	3
• fact(4)	=	fact(3)	*	4
• fact(5)	=	fact(4)	*	5
• Notice	how	for	n	>=	2,	each	factorial	is	defined	
in	terms	of	a	smaller	factorial.

• So	if	n	>=	2,	what	is	fact(n)?
– fact(n)	=	fact(n-1)	*	n



Recursion

• A	recursive	function	is	a	function	that	calls	
itself.

• Recursive	functions	are	used	to	solve	
problems	where	the	solution	to	the	problem	
may	involve	solving	a	smaller	version	of	the	
same	problem.



• A	recursive	function	has	two	parts:
• Base	case:	How	to	solve	the	smallest	
version(s)	of	the	problem	that	we	care	about.

• Recursive	case:	How	to	reduce	a	bigger	
version	of	the	problem	to	a	smaller	version.
– In	order	to	work,	the	recursive	 case	(when	applied	
over	and	over)	must	eventually	reduce	every	size	
of	the	problem	down	to	the	base	case.

• What	are	these	for	factorial?
• Let’s	write	this	in	C++.



How	does	this	work	in	C++?

• Recursion	works	(in	all	modern	programming	
languages)	because:
– All	variables	are	local.
– We	get	new	memory	 for	local	variables	every	time	
a	function	is	called.

• Lets	look	at	a	memory	diagram	when	we	call	
factrec(3).



Why	is	this	useful?
• Any	loop	(for/while)	can	be	replaced	with	a	
recursive	function	that	does	the	same	thing.
– Some	languages	don't	 include	loops!

• Because	we	started	with	Python	and	C++,	we	
naturally	see	things	in	terms	of	loops.

• Some	problems	have	a	"naturally"	recursive	
solution	that	is	hard	to	solve	with	a	loop.

• Other	problems	have	solutions	that	work	
equally	well	recursively or	with	loops	
(iteratively).



Demo



How	to	"get"	recursion

• Forget	all	loops.
• To	find	the	base	case:
– "What	is	the	smallest	version	of	this	problem	I	
would	ever	care	about	solving?"

• To	find	the	recursive	case:
– "If	I	have	a	instance of	the	problem,	how	can	I	
phrase	how	to	solve	the	problem	in	terms	of	
solving	a	smaller	instance?"

An	"instance"	of	a	problem	
is	a	single	example	or	
occurrence	of	that	

problem.



Trust the	recursion
• Base	case	is	usually	easy	("When	do	I	stop?")
• In	recursive	case:
– Break	the	problem	into	two	parts	(not	necessarily	
the	same	size):
• A	part	I	can	solve	"now."
• The	answer	from	a	smaller	instance	of	the	problem.

– Assume	 the	recursive	 call	does	the	right	thing.
– Figure	out	how	to	combine	the	two	parts.



Try	this

• I	want	to	write	a	function	that	returns	an	
uppercase	version	of	an	entire	string
– uc("hello")	would	return"HELLO"

• All	C++	gives	me	is	a	function	that	returns	the	
uppercase	of	a	single	character	(toupper).

• To	solve	this	recursively,	find	the	recursive	
case	and	the	base	case.


