
CS	241,	Spring	2018	
Programming	Project	1	
	
The	Game	of	War	
	
In	this	project,	you	will	implement	the	card	game	War.		War	is	a	game	played	between	two	
people,	with	a	regular	deck	of	52	playing	cards.		Each	card	in	the	deck	has	a	suit	(hearts,	spades,	
clubs,	diamonds),	and	a	rank	(2,	3,	4,	5,	6,	7,	8,	9,	10,	jack,	queen,	king,	and	ace).		Suits	do	not	
matter	for	playing	War	in	any	way,	though	we	will	still	store	them	in	the	program.			
	
The	game	begins	with	each	player	being	given	half	of	the	playing	cards	as	their	own	personal	
deck,	face	down.		In	each	round	of	the	game	(known	as	a	battle),	each	player	turns	over	their	
top	card.		The	player	with	the	higher	ranked	card	wins	that	round.		The	ordering	of	the	ranks	is	
as	listed	above,	with	2	being	the	lowest	rank	and	ace	being	the	highest.		After	the	battle,	the	
winning	player	takes	both	of	the	cards	and	adds	them	to	the	bottom	of	his	or	her	deck,	and	
then	the	next	battle	begins.	
	
If	during	a	battle,	both	players	turn	over	cards	with	the	same	rank,	then	a	war	begins.		Each	
player	takes	the	next	card	off	the	top	of	their	deck	and	places	it	face	down,	and	turns	over	the	
next	card	in	their	respective	decks.		These	cards	are	now	compared	for	the	winning	rank,	and	
the	winning	player	takes	all	six	cards	and	adds	them	to	his	or	her	deck	on	the	bottom.		If	the	
ranks	are	again	tied,	play	continues	in	this	manner,	with	each	player	turning	over	a	card	face	
down,	then	one	face	up,	until	the	ranks	differ	on	the	face-up	cards	and	someone	wins	the	war.	
	
The	game	continues	until	one	player	has	all	the	cards;	this	player	wins	the	game.	
	
There	are	two	situations	left	unspecified	at	this	point:	
	

• Most	descriptions	of	this	game	are	unclear	as	to	what	happens	if	one	or	both	players	
run	out	of	cards	during	a	war.		For	our	purposes,	we	will	assume	if	one	player	runs	out	
of	cards	during	a	war,	the	other	one	wins	(and	takes	all	the	cards).			
	
Example:	Suppose	Alice	and	Bob	are	playing.		Alice	has	only	one	card	left,	the	ace	of	
spades,	while	Bob	has	many	cards	left,	with	the	ace	of	clubs	the	next	one	he	will	play.		
Alice	plays	the	ace	of	spades;	Bob	plays	the	ace	of	clubs,	so	a	war	begins.		Alice	now	has	
no	cards	left	to	use	in	the	war,	so	she	loses	the	battle	(and	is	now	out	of	cards,	so	she	
loses	the	game).	
	
Example:	Suppose	Alice	and	Bob	are	playing.		Alice	has	only	two	cards	left,	the	ace	of	
spades	and	something	else,	while	Bob	has	many	cards	left,	with	the	ace	of	clubs	the	
next	one	he	will	play.		Alice	plays	the	ace	of	spades;	Bob	plays	the	ace	of	clubs,	so	a	war	
begins.		Alice	now	plays	her	next	card	face	down,	as	does	Bob.		However,	Alice	now	
needs	to	play	a	card	face	up,	but	has	no	cards	left	to	use	in	the	war,	so	she	loses	the	
battle	(and	is	now	out	of	cards,	so	she	loses	the	game).	

	
Though	it	is	possible,	we	will	assume	that	both	players	will	never	simultaneously	run	
out	of	cards	during	a	war.	
	

• When	playing	in	real	life,	the	order	the	cards	go	back	into	a	player’s	deck	after	each	
battle	are	not	specified.		Here,	we	will	specify	that	cards	always	go	back	into	the	
winning	player’s	deck	in	the	following	order:	first,	all	the	cards	played	by	the	winning	
player	during	the	battle,	in	the	order	they	were	played,	followed	by	all	the	opponent’s	
cards,	in	the	order	they	were	played.		(See	sample	output	at	the	end	for	examples).	
	

Your	program	must	use	the	following	classes:	
	
A	card	class	(named	Card,	specified	in	the	files	card.h	and	card.cpp).	

• This	class	must	have	two	data	members:	a	char	called	rank	and	a	char	called	suit.		
o The	ranks	will	be	specified	by	the	chars	‘2’,	‘3’,	...,	‘9’,	‘T’,	‘J’,	‘Q’,	‘K’,	‘A’	(the	last	

five	for	ten,	jack,	queen,	king,	and	ace,	respectively).	
o The	suits	will	be	specified	by	the	letters	‘H’,	‘C’,	‘D’,	‘S’	(for	hearts,	clubs,	

diamonds,	spades).	
	

• This	class	must	have	the	following	methods	(functions):	
o A	constructor	which	takes	two	character	arguments	corresponding	to	the	rank	

and	the	suit	with	which	to	initialize	the	card.	
o A	function	called	toString()	which	converts	and	returns	the	card	as	a	two-

character	string	consisting	of	the	rank	followed	by	the	suit.		For	instance,	this	
function	would	return	“7C”	for	the	seven	of	clubs,	and	“KH”	for	the	king	of	
hearts.	

o A	function	called	getValue()	that	returns	the	“value”	of	a	card	as	an	int.		The	
value	of	a	card	is	an	integer	between	2	and	14,	based	solely	on	the	card’s	rank.		
Ranks	2-10	return	those	integers,	while	jack,	queen,	king,	and	ace	return	11,	12,	
13,	and	14,	respectively.	

o A	function	called	beats(const	Card	&	othercard)	that	takes	a	second	card	object	
as	an	argument	and	returns	a	Boolean.		The	return	value	should	be	true	if	and	
only	if	the	card	beats	the	argument	card	(in	terms	of	rank,	following	the	game).	

o A	function	called	ties(const	Card	&	othercard)	that	takes	a	second	card	object	as	
an	argument	and	returns	a	Boolean.		The	return	value	should	be	true	if	and	only	
if	the	card	ties	the	argument	card	(in	terms	of	rank,	following	the	game).	

	
A	deck	class	(named	Deck,	specified	in	the	files	deck.h	and	deck.cpp)	

• This	class	must	have	one	data	member:	a	vector<Card>	called	cards	that	represents	a	
player’s	personal	deck	during	the	game.		The	top	of	the	deck	is	the	beginning	of	the	
vector	(low	indices),	and	the	bottom	of	the	deck	is	the	end	of	the	vector	(high	indices).		
So	cards	are	always	added	to	the	end	of	the	vector	and	removed	from	the	beginning.	
	

• This	class	must	have	the	following	methods:	

o A	default	constructor	(does	nothing).	
o A	function	dealFromTop()	that	returns	a	card.		This	function	should	remove	the	

top	card	from	the	deck	and	return	it.		All	other	cards	shift	one	spot	to	the	left	
(towards	the	top	of	the	deck).	The	size	of	the	deck	decreases	by	one.	

o A	function	addToBottom(const	Card	&	card)	that	takes	a	card	argument	and	adds	
this	card	to	the	bottom	of	the	deck.		The	size	of	the	deck	increases	by	one.	

o A	function	size()	which	returns	the	number	of	cards	in	the	deck	as	an	int.	
o A	function	isEmpty()	which	returns	a	Boolean	corresponding	to	whether	or	not	

the	deck	is	empty.	
o A	function	toString()	which	returns	a	string	representation	of	the	contents	of	the	

deck.		The	string	that	is	returned	should	list	out	the	cards	from	top	to	bottom,	
and	should	be	enclosed	in	square	brackets.		For	instance,	if	a	deck	consists	of	the	
cards	king	of	hearts,	6	of	diamonds,	and	4	of	spades,	this	string	would	look	like	
“[KH	6D	4S]”.		If	a	deck	is	empty,	“[]”	should	be	returned.	
	

A	game	class	(named	Game,	specified	in	the	files	game.h	and	game.cpp)	
• This	class	must	have	five	data	members:	

o Two	decks	of	cards,	one	for	each	player.	
o Two	strings,	storing	the	names	of	each	player.	
o An	integer	specifying	what	round	(battle)	of	the	game	it	is	right	now.	

	
• This	class	must	have	the	following	methods:	

o A	constructor	that	takes	two	strings,	representing	the	names	of	the	two	players.	
o A	function	called	setDeck(int	player,	const	Deck	&	deck)	that	initializes	a	certain	

player’s	deck	to	whatever	the	argument	passed	in	is.	
o A	function	called	isOver()	that	returns	a	Boolean	telling	whether	or	not	the	game	

is	over	(the	game	is	over	when	one	player	has	no	cards).	
o A	function	called	getWinnerName()	that	returns	a	string	specifying	who	the	

winner	of	the	game	is.		You	can	return	whatever	you	want	if	the	game	isn’t	over	
yet.	

o A	function	called	playRound()	that	plays	one	round	of	the	game.		This	function	is	
the	only	function,	aside	from	code	in	main.cpp,	that	is	allowed	to	print	using	
cout.		This	function	should	begin	by	printing	the	round	number	and	the	contents	
of	both	player’s	decks	(using	their	names).		Then	it	should	simulate	a	round	of	
the	game,	printing	messages	along	the	way	indicating	what	is	happening	(see	the	
sample	output).		It	should	print	a	message	as	to	who	wins	the	round.		At	the	end	
of	the	round,	print	the	contents	of	each	player’s	deck	again	(this	is	how	we	will	
check	your	output).	
	

You	should	have	a	seventh	file,	main.cpp,	where	the	program	begins	running.		This	file	should	
have	a	main()	function	(and	any	other	functions	you	deem	appropriate).		The	main	program	
should	prompt	the	user	for	the	name	of	a	text	file,	which	will	contain	the	names	of	the	two	
players	and	a	listing	of	the	cards	in	their	decks	at	the	start	of	the	game.		Your	program	should	
read	in	this	text	file,	divvying	up	the	cards	between	two	Deck	objects,	then	initializing	a	Game	

object	with	the	players’	names	and	their	respective	decks.		Then	your	program	should	simulate	
the	game	of	war	(by	calling	playRound()	repeatedly	until	the	game	is	over).		Lastly,	print	a	
message	indicating	who	has	won	the	game.	
	
Note	that	you	will	never	need	to	“shuffle”	the	deck	in	this	game.		The	order	of	the	cards	is	
deterministic,	and	nothing	is	left	to	chance.			
	
Text	file	format	
	
Each	text	file	will	be	organized	as	follows.		The	first	two	lines	of	the	file	will	be	the	names	of	the	
two	players	(here	just	called	P1	and	P2).		The	remaining	lines	will	all	be	the	cards	in	the	“starting	
deck”	before	they	are	dealt	to	each	player.		The	first	card	listed	goes	to	P1,	the	second	card	
goes	to	P2,	the	third	card	goes	to	P1,	the	fourth	to	P2,	and	so	on,	alternating	between	players	
until	the	file	ends.		It	is	not	guaranteed	that	all	52	cards	will	appear	in	the	file.		(Don’t	worry	
about	that,	I’ve	purposely	kept	the	decks	small	to	make	the	games	shorter	and	debugging	
easier.)	
	
Submission	
	
Turn	in	the	files	card.h,	card.cpp,	deck.h,	deck.cpp,	game.h,	game.cpp,	and	main.cpp	by	the	
project	deadline.		Please	upload	them	directly	to	Moodle	as	individual	files;	do	not	zip	them	
first.		Do	not	upload	anything	except	source	code.	
	
Coding	standards	
	
C++ Code Style Guidelines:	

• Use	good	modular	design.	Think	carefully	about	the	functions	and	data	structures	that	you	are	creating	
before	you	start	writing	code.		

o The	main	function	should	not	contain	low-level	details.	It	should	be	a	high-level	overview	of	
your	solution	(remember	top-down	design).		

o As	a	general	guide,	no	function	should	be	longer	than	a	page	long.	Of	course	there	are	
exceptions,	but	these	should	truly	be	the	exception.		

• Pick	a	capitalization	style	for	function	names,	local	variable	names,	global	variable	names,	and	stick	with	
it.	For	example,	for	function	name	style	you	could	do	something	like	"square_the_biggest"	or	
"squareTheBiggest"	or	"SquareTheBiggest".	By	convention,	variable	names	start	with	a	lower	case	
character.		

• Use	descriptive	names	for	variables,	functions,	classes.	You	don't	want	to	make	function	and	variable	
names	too	long,	but	they	should	be	descriptive	(e.g.	use	"getRadius"	or	"get_radius"	rather	than	"foo"	for	
a	function	that	returns	the	value	of	the	radius	of	a	circle).	Also,	stick	with	C++-style	naming	conventions	
(e.g.	i	and	j	for	loop	counter	variables).		

• Use	good	indentation.		Bodies	of	functions,	loops,	if-else	stmts,	etc.	should	be	indented,	and	statements	
within	the	same	body-level	should	be	indented	the	same	amount.	

• Comment	your	code!		

File	Comments:	Every	.h	and	.cpp	file	should	have	a	high-level	comment	at	the	top	describing	the	file's	
contents,	and	should	include	your	name(s)	and	the	date.		

Function Comments: Every function (in both the .h and the .cpp files) should have a comment describing:
o what	function	does;		
o what	its	parameter	values	are		
o what	values	it	returns	(if	a	function	returns	one	type	of	value	usually,	and	another	value	to	

indicate	an	error,	your	comment	should	describe	both	of	these	types	of	return	values).		

In header files, function comments are for the user of the interface. In a source file, function comments are
for readers of the implementation of that function. Because of this, function comments in C source files
often additionally include a description of how the function is implemented. In particular, if a function
implements a complicated algorithm, its comment may describe the main steps of the algorithm.

My advice on writing function comments: write the function's comment first, then write the function code.
For complicated functions, having a comment that lists the steps of the algorithm, will help you.

When commenting stick to a particular style. For example:

/*
 * Function: approx_pi
 * --------------------
 * computes an approximation of pi using:
 * pi/6 = 1/2 + (1/2 x 3/4) 1/5 (1/2)^3 + (1/2 x 3/4 x 5/6) 1/7 (1/2)^5 +
 *
 * n: number of terms in the series to sum
 *
 * returns: the approximate value of pi obtained by suming the first n terms
 * in the above series
 * returns zero on error (if n is non-positive)
 */

double approx_pi(int n) {
 ...

 (note: for this function, I'd likely have in-line comments describing
 how I'm computing each part of the next term in the series)

/*
 * Function: square_the_biggest
 * ----------------------------
 * Returns the square of the largest of its two input values
 *
 * n1: one real value
 * n2: the other real value
 *
 * returns: the square of the larger of n1 and n2
 */

double square_the_biggest(float n1, float n2) {
 ...

• In-line Comments: Any complicated, tricky, or ugly code sequences in the function body should contain
in-line comments describing what it does (here is where using good function and variable names can save
you from having to add comments). Inline comments are important around complicated parts of your code,
but it is important to not go nuts here; over-commenting your code can be as bad as under-commenting it.
Avoid commenting the obvious. Your choice of good function and variable names should make much of
your code readable. For example, a comment like the following is unnecessary as it adds no information
that is not already obvious from the C code itself, and it can obscure the truly important comments in your
code:

 x = x + 1; /* increment the value of x

	

