
Heap Algorithms

We assume A[] is an array that is indexed from 1 to n. (We ignore index 0).

Percolate Down (Sink): If an item has at least one child that is smaller, swap that item with the larger of its
two children. Continue at the updated child. Stop when there is no swap.

sink(A[], int k)
 while (2*k <= n) // n is size of heap
 j = 2*k
 if (j < n and A[j] < A[j+1]))
 j++
 if A[k] >= A[j]
 break
 swap A[k] and A[j]
 k = j

Percolate Up (Swim): If an item is larger than its parent, swap. Continue at parent. Stop when there is no
swap.

swim(A[], int k)
 while (k > 1 and A[k/2] < A[k])
 swap A[k/2] and A[k]
 k = k/2

Heapsort

• Start with array A[] of unsorted elements in positions 1 through n (ignore position 0).
• Create a heap in place with those elements:

o Interpret A[1..n] as a heap structure with many violations of the heap property.
o Repeatedly call sink() on each element, starting from position n/2 and progressing backwards to

position 1.
o This creates a heap.

• Repeatedly swap A[1] (max element in heap) with A[n] last element in heap. This moves the largest
element in the heap to its correct spot at the end of the array.

• Call sink() to repair the heap from the root node.

heapsort(A[])
 n = size of array A # this first step is sometimes
 for (int k = n/2; k >= 1; k--) # known as the “heapify”
 sink(A, k) # algorithm

 while (n > 1)
 swap A[1] and A[n]
 n-- // decrease size of heap
 sink(A, 1) // Sink takes into account new heap size here.

