






Databases



Standard	stuff

• Class	webpage:	cs.rhodes.edu/db
• Textbook:	get	it	somewhere;	used	is	fine
– Stay	up	with	reading!

• Prerequisite:	CS	241
• Coursework:
– Homework,	group	project,	midterm,	final

• Be	prepared	to	bring	laptops	every	so	often.



Group	project
• You	will	design	and	implement	your	own	
database-driven	website.

• Ideas:	shopping,	auctions,	write	a	better	
BannerWeb,	library/bibliography	system,	reviews	
a	la	Yelp,	bank,	finance/stocks,	job	postings,	social	
networking	a	la	Facebook,	recipes,	movies,	
apartments,	…

• Groups:	probably	4-5	people,	formed	on	your	
own.

• Spread	out	over	the	whole	semester;	check-ins	
along	the	way.



Why	study	databases?

• Academic	reasons
• Programming	reasons
• Business	(get	a	job)	reasons
• Student	reasons



What	will	you	learn?

• Database	design
– How	do	you	model	your	data	so	it	can	be	stored	in	
a	database?

• Database	programming
– How	do	I	use	a	database	to	ask	it	questions?

• Database	implementation
– How	does	the	database	itself	work;	i.e.,	how	does	
it	store,	find,	and	retrieve	data	efficiently?



What	is	the	goal	of	a	database?

• Electronic	record-keeping,	enabling	fast and	
convenient access	to	the	information	inside.

• DBMS	=	Database	management	system
– Software	that	stores	individual	databases	and	
knows	how	to	search	the	information	inside.

– RDBMS	=	Relational	DBMS
– Examples:	Oracle,	MS	SQL	Server,	MS	Access,	
MySQL,	PostgreSQL,	IBM	DB2,	SQLite



DBMS	Features

• Support	massive	amounts	of	data
– Giga-,	tera-,	petabytes

• Persistent	storage
– Data	continues	to	live	long	after	program	finishes.

• Efficient	and	convenient	access
– Efficient:	don't	search	the	entire	thing	to	answer	a	
question!

– Convenient:	allow	users	to	ask	questions	as	easily	as	
possible.

• Secure,	concurrent,	and	atomic	access



Example:	build	a	better	BannerWeb

• Professors	offer	classes,	students	sign	up,	get	
grades

• What	are	some	questions	we	(students	or	
faculty)	could	ask?
– Find	my	GPA.
– …

• Why	are	security,	concurrency,	and	atomicity	
important	here?



Obvious	solution:	Folders

• Advantages?

• Disadvantages?



Obvious	solution++

• Text	files	and	Python/C++/Java	programs



Obvious	solution++

• Let's	use	CSV:

Hermione,Granger,R123,Potions,A
Draco,Malfoy,R111,Potions,B
Harry,Potter,R234,Potions,A
Ronald,Weasley,R345,Potions,C



Hermione,Granger,R123,Potions,A
Draco,Malfoy,R111,Potions,B
Harry,Potter,R234,Potions,A
Ronald,Weasley,R345,Potions,C
Harry,Potter,R234,Herbology,B
Hermione,Graner,R123,Herbology,A



File	1:
Hermione,Granger,R123 
Draco,Malfoy,R111 
Harry,Potter,R234 
Ronald,Weasley,R345
File	2:
R123,Potions,A
R111,Potions,B
R234,Potions,A
R345,Potions,C
R234,Herbology,B
R123,Herbology,A



Problems

• Inconvenient	– need	to	know	Python/C++/Java	
to	get	at	data!

• Redundancy/inconsistency
• Integrity	problems
• Atomicity	problems
• Concurrent	access	problems
• Security	problems



Why	are	there	problems?

• Two	main	reasons:
– The	description	of	how	the	files	are	laid	out	is	
buried	within	the	Python/C++/Java	code	itself	(if	
it's	documented	at	all)

– There	is	no	support	for	transactions (supporting	
concurrency,	atomicity,	integrity,	and	recovery)

• DBMSs	handle	exactly	these	two	problems.



Relational	database	systems

• Edgar	F.	Codd was	a	researcher
at	IBM	who	conceived	a	new
way	of	organizing	data	based
on	the	mathematical	concept
of	a	relation.

• Relation:	a	set	of	ordered	
tuples		(oh,	no,	CS172	stuff…)



• RDBMS	=	Relational	database	
management	system.

• The	relational	model	uses	
relations	(aka	tables)	to	
structure	data.	

• Grades	relation:
First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



• Relational	model	is	an	abstraction.
• Separates	the	logical	view	(as	viewed	by	the	
DB	user)	from	the	physical	view	(DB's	internal	
representation	of	the	data)	

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



• Structured	query	language	(SQL)	for	
accessing/modifying	data:

• Find	all	students	who	are	getting	a	B.
– SELECT First, Last FROM Grades WHERE 
Grade = "B"

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C







Transaction	processing
• One	or	more	DB	operations	can	be	grouped	into	a	
transaction.

• For	a	DBMS	to	properly	implement	transactions:
• Atomicity:	All-or-nothing	execution	of	
transactions.

• Consistency:	A	DB	can	have	consistency	rules	that	
should	not	be	violated.

• Isolation:	Each	transaction	must	appear to	be	
executed	as	if	no	other	transactions	are	
happening	simultaneously.

• Durability:	Any	changes	a	transaction	makes	must	
never	be	lost.



On	to	the	real	stuff	now…



Data	Models

• A	way	of	describing	data.
– Better:	a	description	of	how	to	conceptually	
structure	the	data,	what	operations	are	possible	
on	the	data,	and	any	constraints	on	the	data.

• Structure:	how	we	view	the	data	abstractly
• Operations:	what	is	possible	to	do	with	the	
data?

• Constraints:	how	can	we	control	what	data	is	
legal	and	what	is	not?



Relational	model

• Structure:	relation	(table)
• Operations:	relational	algebra	(select	certain	
rows,	certain	columns,	where	properties	are	
true/false)

• Constraints:	can	enforce	restrictions	like	Grade	
must	be	in	{A,	B,	C,	D,	F}

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Other	models
• Semi-structured	data	that	is	still	“structured”	
but	not	in	relational	format.
– XML,	JSON

• Object	databases,	or	object-relational
• Graph	databases
• NoSQL,	NewSQL



Semi-structured	model

• Structure:	Trees	or	graphs
– e.g.,	XML

• Operations:	Follow	paths	in	the	implied	tree	
from	one	element	to	another.
– e.g.,	XQuery

• Constraints:	can	constrain	data	types,	possible	
values,	etc.
– e.g.,	DTDs	(document	type	definition),	XML	
Schema



Object-relational

• Similar	to	relational,	but
– Values	in	a	table	can	have	their	own	structure,	
rather	than	being	simple	strings	or	ints.

– Relations	can	have	associated	methods.



Relational	model	is	most	common

• Simple:	built	around	a	single	concept	for	
modeling	data:	the	relation	or	table.
– A	relational	database	is	a	collection	of	relations.
– Each	relation	is	a	table	with	rows	and	columns.
– An	RDBMS	can	manage	many	databases	at	once.

• Supports	high-level	programming	language	
(SQL)
– Limited	but	useful	set	of	operations.

• Has	elegant	mathematical	theory	behind	it.



Relation	Terminology

• Relation	==	2D	table
– Attribute ==	column	name	
– Tuple ==	row	(not	the	header	row)

• Database	==	collection	of	relations
First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Relation	Terminology

• A	relation	includes	two	parts:
– The	relation	schema defines	the	column	headings	
of	the	table	(attributes/fields)

– The	relation	instance defines	the	data	rows	
(tuples,	rows,	or	records)	of	the	table.

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Schema

• A	schema	is	written	by	the	name	of	the	relation	
followed	by	a	parenthesized	list	of	attributes.
– Grades(First, Last, Course, Grade)

• A	relational	database	schema	is	the	set	of	
schemas	for	all	the	relations	in	a	DB.

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Domains

• A	relational	DB	requires	that	every	component	
of	a	row	(tuple)	have	a	specific	elementary	
data	type,	or	domain.
– string,	int,	float,	date,	time	(no	complicated	
objects!)

Grades(First:string, Last:string, 
Course:string, Grade:char)



Equivalent	representations	of	a	relation

Grades(First, Last, Course, Grade)
• Relation	is	a	set of	tuples,	not	a	list.
• Attributes	in	a	schema	are	a	set as	well.
– However,	the	schema	specifies	a	"standard"	order	for	
the	attributes.

• How	many	equivalent	representations	are	there	
for	a	relation	with	m attributes	and	n tuples?

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Degree	and	cardinality

• Degree/arity of	a	relation	is	the	number	of	
attributes	in	a	relation.

• Cardinality is	the	number	of	tuples	in	a	
relation.

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C



Keys	to	a	good	relation(ship)



Keys	of	a	relation

• Keys	are	a	kind	of	integrity	constraint.
• A	set	of	attributes	K	forms	a	key	for	a	relation	R	if:
– we	forbid	two	tuples	in	an	instance	of	R	to	have	the	
same	values	for	all	attributes	of	K.

First Last Course Grade

Hermione Granger Potions A

Draco Malfoy Potions B

Harry Potter Potions A

Ronald Weasley Potions C

Grades(First, Last, Course, Grade)



Keys	of	a	relation

• Keys	help	associate	tuples	in	different	relations.

SID CRN Grade

123 777 A

111 777 B

234 777 A

345 777 C

SID First Last

123 Hermione Granger

111 Draco Malfoy

234 Harry Potter

345 Ronald Weasley

CRN Name Semester Year

777 Potions Fall 1997

888 Potions Spring 1997

999 Transfiguration Fall 1996

789 Transfiguration Spring 1996



Example

• Let's	expand	these	relations	to	handle	the	kinds	of	
things	you'd	like	to	see	in	BannerWeb.

• Keep	track	of	students,	professors,	courses,	who	
teaches	what,	enrollments,	pre-requisites,	grades,	
departments	&	their	chairs.
– Only	one	chair	per	department.
– Student	cannot	enroll	in	multiple	copies	of	the	same	
course	in	one	semester.

– Other	constraints	that	are	logical.


