
E/R	Models

(Chapter	4)



Three	Pieces	of	Course

§ Database	design
–Modeling	data

§ Database	programming
– SQL	(other	languages)
– Constructing	applications

§ Database	implementation
– Learning	how	the	guts	work



Why	Learn	About	Database	Modeling?

§ The	way	in	which	data	is	stored	is	very	important	for	
subsequent	access	and	manipulation	by	SQL.

§ Properties	of	a	good	data	model:
– It	is	easy	to	write	correct	and	easy	to	understand	queries.
– Minor	changes	in	the	problem	domain	do	not	change	the	

schema.
– Major	changes	in	the	problem	domain	 can	be	handled	without	

too	much	difficulty.
– Can	support	efficient	database	access.



Purpose	of	the	E/R	Model

§ The	E/R	model	allows	us	to	sketch	the	design	of	a	
database	informally.
– Represent	different	types	of	data	and	how	they	relate	to	
each	other

§ Designs	are	drawings	called	entity-relationship	 diagrams.
§ Fairly	mechanical	ways	to	convert	E/R	diagrams	to	real	

implementations	like	relational	databases	exist.



Purpose	of	E/R	Model

§ When	designing	E/R	diagrams,	
– forget	about	relations/tables!
– only	consider	how	to	model	the	information	you	
need	to	represent	in	your	database.



Tools

§ Entities	(‘entity	sets’)

§ Relationships	(‘rel.	sets’)	
and	mapping	constraints	

§ Attributes	

N M

P



Entity	Sets

§ Entity =	"thing" or	"object	instance"	or	"noun"
§ Entity	set =	collection	of	similar	entities.
– Similar	to	a	class	in	object-oriented	languages.

§ Attribute =	property	of	an	entity	set.
– Generally,	all	entities	in	a	set	have	the	same	set	of	
properties.

– Attributes	can	only	be	“primitive”	types,	like	
strings,	ints,	floats.		No	“collection”	types	or	
objects.



E/R	Diagrams

§ In	an	entity-relationship	diagram,	each	entity	
set	is	represented	by	a	rectangle.

§ Each	attribute	of	an	entity	set	is	represented	
by	an	oval,	with	a	line	to	the	rectangle	
representing	its	entity	set.



Example:	Entity	Sets



Relationships

§ A	relationship	connects	two	or	more	entity	
sets.

§ It	is	represented	by	a	diamond,	with	lines	to	
each	of	the	entity	sets	involved.

§ Don’t	confuse	‘relationships’	with	‘relations’!



Instance	of	an	E/R	Diagram

§ E/R	diagram	describes	a	schema,	not	the	DB	
content	itself.

§ However,	we	can	visualize	what	the	DB	tuples	
might	look	like	by	thinking	of	an	instance of	
the	E/R	diagram:
– contains	instances	of entity	sets	and
– instances	of relationship	sets.



Instance	of	an	Entity	Set

§ For	each	entity	set,	an	instance	stores	a	
specific	set	of	entities

§ Each	entity	is	a	tuple	containing	specific	values	
for	each	attribute

§ What	are	the	examples	of	entity	sets	for	our	
relations	so	far?



Instances	of	(binary)	relationship	sets

§ Binary	relation	with	entities	E and	F:
§ Instance	is	a	set	of	pairs	{(e, f)	:	e is	in	E and	f is	in	
F}
– Instance	need	not	relate	every	tuple	in	E with	every	
tuple	in	F.		Depends	on	what	the	relationship	means.

§ (At	the	moment)	Hard	to	visualize	an	instance	of	
relationship	set	as	a	table	(or	relation)	because	e
and	f are	entities,	not	simple	scalar	values.



Multiplicity	of	binary	relationships

§ Many-one	from	A	to	B:	when	each	entity	in	A	
is	connected	to	at	most	one	entity	in	B.
– If	I	give	you	a	particular	instance	of	entity	A,	you	
can	give	me	back	at	most	one	entity	in	B.

– But,	each	instance	of	B	may	have	multiple	As.
§ One-one:	when	a	relationship	is	many-one	
from	A	to	B	and	from	B	to	A.

§ Many-many:	 everything	else.



Many-Many	Relationships

§ In	a	many-many relationship,	an	entity	of	
either	set	can	be	connected	to	many	entities	
of	the	other	set.



Many-One	Relationships

§ Some	binary	relationships	are	many-one from	
one	entity	set	to	another.

§ Each	entity	of	the	first	set	is	connected	to	at	
most one	entity	of	the	second	set.

§ But	an	entity	of	the	second	set	can	be	
connected	to	zero,	one,	or	many	entities	of	
the	first	set.



One-One	Relationships

§ In	a	one-one	relationship,	each	entity	of	either	
entity	set	is	related	to	at	most	one	entity	of	
the	other	set.



Representing	Multiplicity

§ Show	a	many-one	relationship	by an	arrow	entering	
the	"one" side.

§ Show	a	one-one	relationship	by	arrows	entering	both	
entity	sets.



Different	kinds	of	relationships

many-many

Profs. Advise Students

Take CoursesStudents Office RoomsProfs.

many-one one-one



Exactly	one

§ In	some	situations,	we	can	also	assert	�exactly	
one,� i.e.,	each	entity	of	one	set	must	be	
related	to	exactly	one	entity	of	the	other	set.		
To	do	so,	we	use	a	rounded	arrow.



Example:	Exactly	One

§ Consider	favorite-course between	Students	
and	Courses.

§ Some	courses	are	not	the	favorite-course	of	
any	student,	so	a	rounded	arrow	to	Students	
would	be	inappropriate.

§ But	a	student	has	to	have	a	favorite-course

Students CoursesFavorite
course



Attributes	on	relationships

§ Attributes	can	also	be	placed	on	a	
relationship,	as	well	as	on	an	entity	set.

§ Only	necessary	if	the	attribute	cannot	be	
determined	from	a	single	entity	instance.

§ Example:
– Students	and	Courses:	where	do	we	store	grades?



E/R	Diagrams	Day	2:	Review

§ Entity	sets	(rectangles)
§ Attributes	(ovals)
§ Relationships	(diamonds	connecting	entity	
sets)

§ Multiplicity	of	relationships	(arrows)
§ Running	examples:	BannerWeb-style	DB,	
bookstore	DB



Multiway relationships

§ Rare
§ An	arrow	pointing	to	entity	set	E	means	if	we	
select	one	entity	from	each	of	the	other	entity	
sets	in	the	relationship,	those	entities	are	
related	to	(at	most/exactly)	 one	entity	in	E.

§ Multiway	relationships	 can	often	be	converted	
into	multiple	binary	relationships.	 (later)



Roles	in	Relationships

§ Can	the	same	entity	set	appear	more	than	
once	in	the	same	relationship?

§ Prerequisite	relationship	between	two	
Courses

§ But	which	course	is	the	pre-req?	



Roles	in	Relationships

§ Label	the	connecting	lines	with	the	role of	the	
entity



Parallel	Relationships

§ Can	there	be	more	than	one	relationship	
between	the	same	pair	of	entities?

§ TA	and	Take	relationship	between	Students	
and	Classes



Converting	Multiway to	Binary

§ It	is	easy	to	convert	a	multiway relationship	to	
multiple	binary	relationships
– Create	a	new	connecting	entity	set.	Think	of	its	
entities	as	the	tuples	in	the	relationship	set	for	the	
multiway relationship

– Introduce	many-one	relationships	from	the	
connecting	entity	set	to	each	of	the	entities	in	the	
original	relationship

– If	an	entity	set	plays	>	1	role,	create	a	relationship	
for	each	role



Try	this

§ Partners	or	triples.
§ Design	an	E/R	diagram	for	a	bank,	including	
info	about	customers	and	accounts.

§ Customer	info:	name,	addr,	phone,	SSN.
§ Account	info:	type	(checking/savings),	
balance.

§ Accounts	may	have	multiple	customers;	
customers	may	have	multiple	accounts.



Try	this

§ What	if	an	account	can	have	only	one	
customer?

§ What	if	a	customer	can	have	only	one	
account?

§ What	if	a	customer	can	have	multiple	
addresses	and	multiple	phones?

§ (Think	pre-cell-phones)		What	if	we	want	to	
associate	phones	with	addresses?



Is-A	Hierarchies	(Subclasses)

§ Certain	entities	might	need	to	store	special	
properties	that	not	all	entities	possess.

§ Create	two	entity	sets:	a	“super-entity”	and	a	
“sub-entity”	and	connect	them	with	a	Is-A	
relationship	(triangle	instead	of	diamond).



Good	design	principles

§ Faithfulness
– Entity	sets	&	attributes	should	reflect	reality	in	
choice	of	attributes	and	multiplicity	of	
relationships.

– The	real-world	situation	can	dictate	what	
faithfulness	means.

– E/R	diagram	cannot	convey	all	the	information.
– Consider	Students/Courses/Profs	&	multiplicity	–
can	be	different	ways	to	do	this	diagram.



Good	design	principles

§ Avoid	redundancy
–Watch	out	for	an	attribute	duplicating	a	
relationship.

§ Choosing	the	right	relationships
– Does	every	relationship	express	all	the	
information	you	need	it	to	express?



Good	design	principles

§ Picking	an	attribute	or	entity	set
§ Replace	E	by	an	attribute	when
– All	relationships	involving	E	must	have	arrows	
entering	E.

– If	E	has	>1	attribute,	then	no	attribute	depends	on	
any	other	attribute.

– No	relationship	involves	E	more	than	once.



Keys	in	E/R	diagrams

§ Entity	sets	will	have	one	or	more	keys.
– Customary	to	choose	a	primary	key	and	underline	
the	attributes.

§ Possible	for	an	entity	set's	key	attributes	to	
belong	to	another	entity	set	in	certain	
situations.
– Is-a	hierarchies
– weak	entity	sets	(later)



One	perspective	on	real-world	keys
§ Multi-attribute	and/or	string	keys…
§ …can	be	time	consuming	and	sometimes	may	not	guarantee	a	lack	

of	duplicates.
– movie(title,	 year,	date-released,	 etc)
– title	+	year	=	lots	to	type	to	identify	a	movie	in	SQL.
– integer	key	movieID saves	 typing!

§ …break	encapsulation	
– patient(first,	 last,	DOB,	etc)
– Are	these	keys	being	transmitted	 in	an	insecure	manner?	 Is	this	a	

security/privacy	 risk?
– integer	key	patientID fixes	 this.

§ …are	brittle
– Name	change?	Two	movies	with	the	same	name/year?
– Unique	 integer	ID	always	exists,	never	changes.



Referential	integrity	in	E/R

§ Referential	integrity:	requires	every	value	of	
an	attribute	in	one	relation	to	appear	as	the	
value	of	an	attribute	in	another	(or	the	same)	
relation.

§ Enforced	through	multiplicity	arrows
§ Degree	constraints	can	be	added	to	further	
restrict	multiplicity.



Try	US	Congress	handout

§ The	US	Congress	is	composed	of	the	House	of	
Representatives	and	the	Senate.



Weak	entity	sets

§ A	weak	entity	set	is	an	entity	set	whose	(primary)	
key	contains	attributes	from	one	or	more	other	
entity	sets.

§ In	other	words,	an	entity	set	E	is	weak	if	in	order	
to	identify	entities	of	E	uniquely,	we	need	to	
follow	one	or	more	many-one	relationships	from	
E	and	include	the	key	of	the	related	entity	sets	in	
E's	key.

§ Possible	that	all	attributes	in	a	weak	entity	set's	
key	come	from	other	entity	sets.



Example
§ Consider	players	in	a	sports	league:
– Name	is	not	a	key	(might	be	duplicate	names)
– Number	is	certainly	not	a	key	(numbers	will	be	
duplicated	across	teams)

– But	number	+	team	should	be	a	key

§ Use	double	border	for	weak	entity	sets	and	their	
supporting	many-one	relationships.

Players TeamsPlays-
on

name namenumber



How	about	courses	and	departments?



Keys	for	a	weak	entity	set

§ A	relationship	R	from	a	weak	entity	set	E	to	F	
is	supporting if
– R	is	a	binary,	many-one	relationship	from	E	to	F.
– R	has	referential	integrity	from	E	to	F.

§ F	supplies	its	key	attributes	to	define	E's	key.
§ If	F	itself	is	a	weak	entity	set,	then	we	must	
find	F’s	supporting	relationships	and	also	use	
the	keys	from	those	supporting	entity	sets.



Where	do	weak	entity	sets	come	
from?

§ Cause	1:	Implicit	hierarchies	not	from	an	"is-a"	
relationship.
– A	player	“belongs	to”	a	team,	or	a	flight	“is	flown	by”	
an	airline.

– Happens	when	a	piece	of	a	key	is	represented	as	an	
entity	set	rather	than	an	attribute.
• Can	(technically)	 be	solved	by	putting	a	unique	ID	on	an	
entity	set,	but	sometimes	 this	causes	more	 trouble	than	it’s	
worth.

– "is-a"	hierarchies	seem	to	lead	to	weak	entity	sets	
(subclasses),	but	we	don't	notate	them	with	double	
borders	because	their	hierarchical	relationships	are	
always	one-one.



Where	do	weak	entity	sets	come	
from?

§ Cause	2:	Connecting	entity	sets	created	by	
eliminating	a	multi-way	relationship.
– Often,	connecting	entity	sets	have	no	attributes	of	
their	own;	they	must	pick	up	their	key	attributes	
from	the	entity	sets	they	connect.

– Example:	A	CUSTOMER	rents	a	CAR	from	a	
SALESPERSON.



Converting	E/R	diagrams	to	relational	
designs

§ Entity	set	->	Relation
– Attribute	of	entity	set	->	attribute	of	relation
– Key	of	entity	set	->	primary	key	of	relation

§ Relationship	->	Relation
– Attribute	of	relationship	->	attribute	of	relation
– Key	attribute	of	connecting	entity	set	->	key	
attribute	of	relation

§ Special	cases:	weak	entity	sets,	"is-a"	
hierarchies,	combining	relations.





Handling	multiple	roles

Friend-
of

Person

name

email

Requester

Recipient

If	an	entity	set	E	appears	k	>	1	times	in	a	relationship	
R,	then	the	key	attributes	for	E	appear	k	times	in	the	
relation	for	R,	appropriately	renamed.



Handling	weak	entity	sets

§ For	each	weak	entity	set	W,	create	a	relation	
with	attributes:
– attributes	of	W
– attributes	of	supporting	relationships	for	W
– key attributes	of	supporting	entity	sets	for	W



Supporting	Relationships

§ Schema	for	Departments	is	Departments(Name)
§ Schema	for	Courses	is	Courses(Number,	
DeptName,	CourseName,	Classroom,	
Enrollment)

§ What	is	the	schema	for	Offer?



Supporting	Relationships

§ What	is	the	schema	for	offer?
– Offer(Name,	Number,	DeptName)
– But	Name	and	DeptName are	identical,	so	the	schema	
for	Offer	is	Offer(Number,	DeptName)

– The	schema	for	Offer	is	a	subset	of	the	schema	for	the	
weak	entity	set,	so	we	can	dispense	with	the	relation	
for	Offer.

– Key	point:	Don't	make	a	relation	for	supporting	
relationships.



Summary	of	Weak	Entity	Sets

§ If	W	is	a	weak	entity	set,	the	relation	for	W	has	a	schema	
whose	attributes	are	
– all	attributes	of	W
– all	attributes	of	supporting	relationships	 for	W
– for	each	supporting	 relationship	 for	W	to	an	entity	set	E

• the	key	attributes	 of	E

§ There	is	no	relation	for	any	supporting	relationship	for	W



Combining	Relations

§ Consider	many-one	Teach	relationship	from	
Courses	to	Professors

§ Schemas	are:
Courses(Number,	DepartmentName,	CourseName,	
Classroom,	Enrollment)
Professors(Name,	Office,	Age)
Teach(Number,	DepartmentName,	ProfessorName,	
Office)



Combining	Relations
Courses(Number,	 DepartmentName,	 CourseName,	 Classroom,	
Enrollment)
Professors(Name,	 Office,	Age)
Teach(Number,	 DepartmentName,	 ProfessorName,	 Office)

§ The	key	for	Courses	uniquely	determines	all	attributes	of	
Teach

§ We	can	combine	the	relations	for	Courses	and	Teach	into	
a	single	relation	whose	attributes	are
– All	the	attributes	for	Courses,
– Any	attributes	of	Teach,	and
– The	key	attributes	of	Professors



Rules	for	Combining	Relations
§ We	can	combine	into	one	relation	Q	
– The	relation	for	an	entity	set	E
– all	many-to-one	relationships	R1,	R2,	…,	Rk from	E	to	
other	entity	sets	E1,	E2,	…,	Ek respectively

§ The	attributes	of	Q	are
– All	the	attributes	of	E
– Any	attributes	of	R1,	R2,	…,	Rk
– The	key	attributes	of	E1,	E2,	…,	Ek

§ Combining	a	many-many relationship	with	one	of	
its	entity	sets	often	leads	to	redundancy.		You	
probably	never	want	to	do	this!



Is-a	to	Relational

§ Three	approaches:
– E/R	viewpoint
– Object-oriented	viewpoint
– “Flatten”	viewpoint



Rules	Satisfied	by	an	Is-a	Hierarchy

§ The	hierarchy	has	a	root	entity	set.
§ The	root	entity	set	has	a	key	that	identifies	
every	entity	represented	by	the	hierarchy.

§ A	particular	entity	can	have	components	that	
belong	to	entity	sets	of	any	subtree of	the	
hierarchy,	as	long	as	that	subtree includes	the	
root.



Example	ISA	hierarchy



Is-a	to	Relational	Method	I:	E/R	
Approach

§ Create	a	relation	for	each	entity	set
§ The	attributes	of	the	relation	for	a	non-root	
entity	set	E	are
– the	attributes	forming	the	key	(obtained	from	the	
root)	and

– any	attributes	of	E	itself
§ An	entity	with	components	in	multiple	entity	sets	
has	tuples	in	all	the	relations	corresponding	to	
these	entity	sets

§ Do	not	create	a	relation	for	any	is-a	relationship
§ Create	a	relation	for	every	other	relationship



Is-a	to	Relational	Method	II:	Object	
Oriented	Approach

§ Treat	entities	as	objects	that	are	members	of	a	
particular	subtree	in	the	tree.
– Subtrees	must	contain	the	root.
– Subtrees	may	contain	more	than	one	entity	set.

§ What	are	all	the	logically-possible	classes	for	
books	in	our	hierarchy?



Is-a	to	Relational	Method	II:	Object	
Oriented	Approach

§ Enumerate	all	subtrees of	the	hierarchy	that	
contain	the	root.

§ For	each	such	subtree,
– Create	a	relation	that	represents	entities	that	have	
components	in	exactly	that	subtree.

– The	schema	for	this	relation	has	all	the	attributes	
of	all	the	entity	sets	in	that	subtree.



Is-a	to	Relational	Method	III:	“Flatten”	
Approach	(or	"NULLs")

§ Make	one	relation	for	the	whole	hierarchical	
structure.

§ Use	NULL	for	any	attribute	that	is	not	defined	
for	a	particular	entity.



Comparison	of	the	Three	Approaches

§ Trade-offs
– In	general,	we	want	to	minimize	joins	(takes	time)	
and	also	minimize	duplicated	or	redundant	
information	(takes	space	[memory]).

– It	is	expensive	to	answer	queries	involving	several	
relations	(advantage:	flatten)

– E/R	approach	works	well	for	some	queries	where	
info	is	duplicated	among	relations.

– E/R	approach	is	hard	for	other	queries	because	we	
may	need	joins.



Comparison	of	the	Three	Approaches

§ Number	of	relations	for	n	relations	in	the	
hierarchy
–We	like	to	have	a	small	number	of	relations
– Flatten
• 1

– E/R
• n

– OO
• Can	be	2^n



Comparison	of	the	Three	Approaches

§ Redundancy	and	space	usage
– Flatten
• May	have	a	large	number	of	NULLs
• (also	prevents	you	from	using	NULL	to	denote	
something	besides	class	membership)

– E/R
• Several	tuples	per	entity,	but	only	key	attributes	are	
repeated

– OO
• Only	one	tuple	per	entity


