
NoSQL	Databases



Earlier…

• We	have	spent	most	of	our	time	with	the	relational DB	model	so	far.
• There	are	other	models:

• Key-value:	a	hash	table
• Graph:	stores	graph-like	structures	 efficiently
• Object:	good	for	storing	OO	things
• Document:	stores	an	entire	“document”	 at	a	time	which	is	usually	a	text-
based	file	with	some	internal	 structure	(e.g.,	XML,	JSON).



NoSQL

• NoSQL	=	“non-SQL”	or	“not	only	SQL”	--- refers	to	anything	other	than	
the	relational	model.
• Around	since	the	60s,	but	the	term	was	not	popularized	until	these	
types	of	databases	became	extremely	popular	with	companies	like	
Facebook,	Amazon,	and	Google.
• Increasingly	used	in	big	data	and	real-time	web	applications.
• Advantages:	Simpler	DB	designs	(no	schemas),	simpler	scaling	to	
clusters	of	machines,	faster	than	relational	in	some	cases.
• Disadvantages:	Often	no	joins	(low	functionality),	need	multiple	
queries	to	answer	some	questions.



• RelationalModel
• store	related	data	in	tables
• require	a	schema	which	defines	tables	prior	
to	use

• encourage	normalization	to	reduce	data	
redundancy

• support	table	JOINs	to	retrieve	related	data	
from	multiple	tables	in	a	single	command

• implement	data	integrity	rules
• provide	transactions	to	guarantee	two	or	
more	updates	succeed	or	fail	as	an	atomic	
unit

• can	be	scaled	(with	some	effort)
• use	a	powerful	declarative	language	for	
querying

• offer	plenty	of	support,	expertise	and	tools.

• Document	Model
• store	related	data	in	JSON-like,	name-value	
documents

• can	store	data	without	specifying	a	schema
• must	usually	be	denormalized so	
information	about	an	item	is	contained	in	a	
single	document

• should	not	require	JOINs	(presuming	
denormalized documents	are	used)

• permit	any	data	to	be	saved	anywhere	at	
anytime	without	verification

• guarantee	updates	to	a	single	document	—
but	not	multiple	documents

• provide	excellent	performance	and	
scalability

• use	JSON	data	objects	for	querying
• are	a	newer,	exciting	technology.



Scenario:	Address	book
• First	attempt:	id,	title,	 firstname,	lastname,	telephone,	email,	address,	
city,	 state,	zipcode.
• Problem	– multiple	telephone	numbers,	addresses,	emails

• Solution	– Create	separate	tables	 for	each	of	these.
• New	relations:	original	relation	is	now	just	(id,	title,	 first,	last).		Three	
new	relations	for	Telephones,	Addresses,	Emails.
• Problems

• Rigid	schema	– what	if	we	want	to	add	middle	 names,	birthdays,	company	
name,	 job	title,	 anniversary,	social	media	accounts?

• Data	is	fragmented	– split	 across	multiple	 tables.	 	Not	easy	to	retrieve	all	of	
someone’s	 email	 addresses,	 telephone	 numbers,	and	postal	addresses	 at	
once	in	an	easy-to-read	format.



NoSQL	alternative



Scenario:	Twitter

• Suppose	we	want	to	implement	a	relational	DB	to	store	tweets.
• The	overhead	of	a	relational	DB	may	be	overkill	here	--- we	will	rarely	
need	transactions,	for	instance.	
• A	failed	update	is	unlikely	to	cause	a	global	meltdown	or	financial	
loss.		We	can	sacrifice	a	little	ACID	for	some	speed.



NoSQL	Twitter



MongoDB

• NoSQL	document-oriented	database.
• Every	document	is	represented	by	JSON

• Javascript Object	Notation
• Free	and	open-source.
• According	to	their	website,	used	by	Expedia,	Forbes,	AstraZeneca,	
MetLife,	 Facebook,	Urban	Outfitters,	and	Comcast.



JSON

• Data	interchange	format,	not	a	programming	language.
• In	other	words,	used	to	represent	and	store	data,	not	give	commands.
• Data	types:

• Number	(integer	or	float),	String	(double	quoted),	Boolean	(true/false)
• Arrays:	uses	square	bracket	notation
• Objects:	Uses	curly	bracket	notation

• Spacing	doesn’t	matter.



JSON	Example	(Object)

{
“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”

}



JSON	Example	(Array)

[1, “hello world”, 2.76]



JSON	Example	(Array)	of	Objects)
[

{
“crn”: 12345
“title”: “Databases”
“department”: “Math and CS”

},
{

“crn”: 45897
“title”: “Discrete Structures”
“department”: “Math and CS”

}
]





MongoDB	concepts

• In	a	RDBMS,	we	often	think	of	rows	of	a	table	as	individual	records.
• In	MongoDB	(and	other	document-oriented	DBs),	records	are	(JSON)	
documents.
• A	group	of	documents	(with	presumably	similar	structures)	is	called	a	
collection in	MongoDB.

• Table	<->	Collection
• Row	<->	Document
• Column	<->	Field


