7.2 B-TREES 7 277

Using Insert as a guide, it should not be difficult to define DeleteMin and
Delete for AVL trees. We leave these definitions as exercises, and simply ob-
serve that all that is necessary is to balance the tree, if necessary, after each
recursive call has returned.

Efficiency and Verification

Has all this work been worth it? By using BalanceRight and Balancel eft after
evety recursive call to Insert or Delete, we have guaranteed that a tree with =
nodes will always have height O(log #), so the insertion, deletion, and Find
operations will make no more than a logarithmic number of recursive calls. It
would appear that we’ve done what we set out to, but we have to be a bit
careful. Two things could mess us up: The balancing functions could take
longer than constant time, or they might be called more than O{log 7} times.
It is easy to see that the balancing algorithms run in constant time; after all,
they consist of nothing but straight-line code, with no loops or recursive calls.

If you look at the definition of Iusert, you'll see that the balancing func-
tions are called at most once for each recursive call to Insert. That’s all we
need; the balancing functions contribute a constant amount of time for each
of the {no mare than logarithmic) times they’re called.

Finally, we mentioned that a balance operation at a node will restore bal-
ance at that node, but might change the height of that node in such a way as
to require a balancing of the node’s parent. Fortunately, that’s taken care of
by the nature of calls in Insert. Notice that Iusert builds a stack of pending
function calls as it walks its way down the tree to find where the new element
belongs. Once the new node has been built and inserted, the pending calls are
popped from the stack, effectively retracing the path used to find where the
new node belonged. Look at where the balancing functions are called: just
before the end of each call. That means that as Iusert backs its way up the
tree, it calls the balancing functions to restore balance from bottom up, ex-
actly as required.

B-TREES

By now you should be completely comfortable with the principle that the
timing of the search tree operations is driven by the height of the tree. As
long as we can keep our tree broad and shallow, we can be sure that all our
tree operations will be fast, which is to say logarithmic. With AVL trees, we
kept the tree shallow by forcing the heights of the subtrees of any node to be
nearly equal, using rotations to restore balance each time we inserted or
deleted an element, The best case, the one in which the tree had the maxi-
mum number of elements for a given height, is clearly obtained with a com-
plete binary tree, and we saw in Chapter 6 that the height of a complete bina-

278

FIGURE 7.8

A 4-ary search tree,
showing the search
path for 7|

Chapter 7 SPECIALIZED TREES

ry tree with # nodes is always less than log,n. It would seem that we can’t do
any better than that, but in this section we will show a tree data strucrure that
does indeed have less depth than log,n for # nodes, and we will explore the
reasons that this data structure has become the standard in many applications.

k-ary Trees, Again

Up to now, we have concentrated almost entirely on binary trees, on the
grounds that (1) they are easy to implement, (2) there are many good applica-
tions using binary trees, and (3) any tree can be mapped to a binary tree, any-
way, with lefemost children becoming left children and right siblings becom-
ing right children, The problem with this mapping is that we usually wind up
with a binary tree that is higher than the original. Siace we are interested in
keeping the height of the tree as small as possible, it might be worth explor-
ing these trees in more depth (pun intended). |

Recall that a k-ary trec (also called a multiway tree of order k) is just a
tree in which every node may have as many as k children, for some integer
k. Tn Figure 7.8, we show a 4-ary search tree. Notice that each node has at
imost four children, and each node has one less data element in it than it has
children. Notice also that this tree generalizes the binary search tree proper-
ty, in that the pointers between data elements in each node point to sub-
trees, each of which has all its data values strictly between the values that
bracket the pointer. For instance, suppose we are searching for the element
71 in the tree. We begin at the root and find (perhaps by a sequential
search) that 71 lies between the elements 34 and 80. We then take the
pointer to the subtree whose values lic between 34 and 80 and repeat the
process, We find that 71 is larger than the last element, 68, in that node, so
we follow the pointer to the subtree whose values are all larger than 68
(and necessarily less than 80). We repeat the search at the leaf node and
find 71 among the values in that leaf node, so the search is successful. If we
were seeking 70, we would attempt to take the leftmost pointer in the 71

1|34[1/80

7.2 B-TREES 279

node, find that it was NULL, and report failure, since there is no subtree
that could possibly contain 70,

In the tree of Figure 7.8, notice that all the leaves are at the same level.
This is certainly a stronger condition than we had for AVL trees. This will be
one of the properties of the data structure we will introduce in this section;
and it, along with a condition we will require on the sizes of the nodes, will
enable us to get a good estimate on the height of such trees if we know the
number of nodes in the tree. For now, we will just note that because of the
higher fanout—chat is, the number of pointers out of the nodes—we can
pack much more information in a multiway tree than we could in a binary
teee of the same height. For instance, Figure 7.8 shows 19 data elements in a
tree of height 2, whereas a binary tree would need to be at least twice that
height to store the same amount of information.

B-Trees Explained

We define a B-tree of order d to have as its structure a (2d+1)-ary tree with
the following properties:

1. The data elements {or at least the key fields) in each node are as-
sumed to be linearly ordered. If the data elements are records consist-
ing of several fields, then one field of the record is a key field, with
values taken from a linearly ordered set.

2. Each internal node has one more child than it does data elements
(and leaves, of course, have no children).

3. 'The root contains between 1 and 2d data elements.

4. FEach node except for the root contains between d and 2d data ele-
ments.

5. Allleaves are at the same depth in the tree.

6. 'The tree has the extended search tree property: If the keys in a node
n are arranged in their linear order, &, k,, . . ., k,, then there is an
associated linear order among the subtrees, Sy, Sy, . . ., S,,, of that
‘node such that (a) every key in §; is less than k,, (b) every key in S,
is greater than &, and (c) for 1<i<m, every key in §; lies strictly be-
tween k; and &, ;.

Note that the binary search tree property is just condition 6 with m=1,
with §, representing the left subtree and §, the right subtree. Condition 4 can
be restated this way: Each node except for the root is at least half full. B-trees
were introduced by R. Bayer and E. M. McCreight in 1972, and folklore has
it that they have never explained the choice of name for this particular data
structure, so you are free to speculate on what the “B” stands for. B-trees
were designed to support the operations Insert, Delete, Find a data element,
given its key; Update an element without changing its key; and FindNext,
which, when given a key value &, returns the least key &, in the tree for which

280

FIGURE 7.9

Inserting into a B-tree

Chapter 7 SPECIALIZED TREES

k<k,. The operation Insert is particularly ingenious and differs from the in-
sertion algorithms for the tree structures we’ve seen so far in that if the tree
ever needs to change its height, it does so by growing up from the root rather
than down from a leaf.

To illustrate the action of Insert, consider a B-tree of order 2. In such a
tree, the root may have from one to four elements, while all the rest of the
nodes must have either two, three, or four elements. In Figure 7.9a, we see
the root after having inserted the elements 17, 45, 13, and 26. As each new
clement arrives, it is placed in order in the root. When the element 30 arrives,
it cannot be placed in the root node—there’s no more room. What we do in
this case is the heart of the insertion algorithm: We split the root into equal
parts, one containing all the elements below the median, 26, and the other
containing all the elements above the median. The median value itself gets
promoted to a new root node, which has the split nodes as children, as in
Figure 7.9b.

If we continue by inserting 28 and 41, we see that they are both greater
than 26, so, by the search tree property, they belong in the right subtree of
the root node, as they are in Figure 7.9¢c. Now, if we insert 50, we sce that it
should also go in the rightmost node. Of course, there’s no room for it, so we
again split the node into two and promote the median value, 41, to the par-
ent node. If the parent node had been full, we would have had to split it and
promote its median to a new root node. That’s all there is to insertion: We
try to place each node in its proper leaf, and if that would cause overflow, we
split the node, promote the median value, and try to insert the promoted
value into the parent node, splitting when necessary, tracking up the tree
until we arrive at a node that does not overflow.

[Tyl

FIk

Y
17]+[26]e]45]] [loslelirle] [elsole]4s]]

{a) After inserting |7,45,13,26 {b) After inserting 30

[1[26]y] [t]26]s[41]s]

k
o Lefss[ef17)e] [ef2s+]30]]

[e[s3]efs7le] |ef2s]+[30[-[41]-]45

45]e]50[¢|

(c) After inserting 28,41 {d) Afterinserting 50

7.2 B-TREES 281

If it sounds pretty simple, that’s because it is—at least for people. Things
get a bit more complicated when we try to translate the insertion process into al-
gorithmic form, largely because we humans can pretty much automatically take
care of such details as inserting an element into a node, splitting a node, and de-
ciding where an element belongs in the tree—operations that require a moder-
ate amount of fussy detail to program. We will provide a detailed account of
the insertion algorithm from the top down; then, having done that, we will
provide a sketch of the details of deletion and leave the programming to you.

The node declarations are immediate. Each node in the B-tree will consist
of an array of data elements, a larger array of pointers to children, and a field
for the present size of the array.

const int ORDER = 4; // Global constant for order of tree

template<class T>
class BTreeNode
{
public:
// The usual constructors go here.

T data[l + 2 * ORDER]; // We'll never use datal0].
BTreeNode<T>% child[1 + 2 * ORDER];
int size;

The insertion routine itself is little more than a shell. Most of the work is
done by a recursive function, Recursivelnseit, which inserts an atom a into
the tree rooted at root. If the insertion causes the root to be split, oot then
points to the left split node, #p points to the right split node (and is NULL if
no splitting occurs at the root), and promoted is the atom that must be pro-
moted to the new root.

void Insert(T a, BTreeNode<T>#& root)
{
BTreeNodex temp, rp;
T promoted;
RecursiveInsert(a, root, rp, promoted); -

if (rp) // Root vas split, so build a new root.
{

temp = root;

root = new BTreeNode<T>;

root->size = 1;

reot->datali] = promoted;

root->child[0] = temp;

root->child[1} = rp;

