Handling weak entity sets

" For each weak entity set W, create a relation
with attributes:

— attributes of W
— key attributes of supporting entity sets for W



Supporting Relationships

— (Name )
Departmentg —"

= Schema for Departments is Departments(Name)

= Schema for Courses is Courses(Number,

DeptName, CourseName, Classroom,
Enrollment)

= \What is the schema for Offer?



Supporting Relationships

(Name )
Departments —

| (Namg\\ /@Iassro.om

= \WWhat is the schema for offer? @J“b\

e N
Enrollmenl P,

— Offer(DeptName, CourseNumber, DeptName)

— But Name and DeptName are identical,

for Offer is Offer(Number, DeptName)

so the schema

— The schema for Offer is a subset of the schema for the
weak entity set, so we can dispense with the relation

for Offer.

— Key point: Don't make a relation for supporting

relationships.



Summary of Weak Entity Sets

L (Name )
Departments —_—
TAR
a (Name> ssroom)
— Classroom )
./
Courses o
[couses]|
CEnrolment 5

Number |

= |f Wis a weak entity set, the relation for W has a schema
whose attributes are

— all attributes of W

— all attributes of supporting relationships for W

— for each supporting relationship for W to an entity set E
— the key attributes of E

= There is no relation for any supporting relationship for W

4



Combining Relations

" Consider many-one Teach relationship from
Courses to Professors

= Schemas are:

Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment)

Professors(Name, Office, Age)

Teach(Number, DepartmentName, ProfessorName,
Office)




Combining Relations

Courses(Number, DepartmentName, CourseName, Classroom,
Enrollment)

Professors(Name, Office, Age)
Teach(Number, DepartmentName, ProfessorName, Office)

The key for Courses uniquely determines all attributes of
Teach

We can combine the relations for Courses and Teach into
a single relation whose attributes are

— All the attributes for Courses,
— Any attributes of Teach, and
— The key attributes of Professors



Rules for Combining Relations

= \We can combine into one relation Q
— The relation for an entity set E

— all many-to-one relationships R1, R2, ..., Rk from E to
other entity sets E1, E2, ..., Ek respectively

" The attributes of Q are
— All the attributes of E
— Any attributes of R1, R2, ..., Rk
— The key attributes of E1, E2, ..., Ek

" Combining a many-many relationship with one of
its entity sets often leads to redundancy.



ISA to Relational

" Three approaches:
— E/R viewpoint
— Object-oriented viewpoint

— “Flatten” viewpoint



Rules Satisfied by an ISA Hierarchy

" The hierarchy has a root entity set.

" The root entity set has a key that identifies
every entity represented by the hierarchy.

" A particular entity can have components that
belong to entity sets of any subtree of the

hierarchy, as long as that subtree includes the
root.



Example ISA hierarchy



ISA to Relational Method I: E/R
Approach

" Create a relation for each entity set

= The attributes of the relation for a non-root
entity set E are

— the attributes forming the key (obtained from the
root) and

— any attributes of E itself

" An entity with components in multiple entity sets

has tuples in all the relations corresponding to
these entity sets

" Do not create a relation for any isa relationship
" Create a relation for every other relationship

11



ISA to Relational Method Iil: Object
Oriented Approach

" Treat entities as objects belonging to a single
class.

= “Class” == subtree of the hierarchy that
includes the root.

= e.g., for Movies:

— Movie, Movie+Cartoon, Movie+MM, Movie
+Cartoon+MM.

13



ISA to Relational Method II: Object
Oriented Approach

" Enumerate all subtrees of the hierarchy that
contain the root.

= For each such subtree,

— Create a relation that represents entities that
have components in exactly that subtree.

— The schema for this relation has all the attributes
of all the entity sets in that subtree.

» Schema of the relation for a relationship has
key attributes of the connected entity sets.

14



ISA to Relational Method llI: “Flatten”
Approach (or "NULLs")

= Make one relation for the whole hierarchical
structure.

= Use NULL for any attribute that is not defined
for a particular entity.

15



Comparison of the Three Approaches

= Answering queries

— It is expensive to answer queries involving several
relations (advantage: flatten)

— E/R approach works for some queries where info
is duplicated among relations.

* "What 2008 movies were > 150 mins?"

— E/R approach is hard for other queries.

* "What weapons were used in cartoons > 150 mins?"

23



Comparison of the Three Approaches

= Number of relations for n relations in the
hierarchy
— We like to have a small number of relations
— Flatten
. 1
—E/R
°n
— 00

e Can be 27n

24



Comparison of the Three Approaches

= Redundancy and space usage

— Flatten
* May have a large number of NULLs

* (also prevents you from using NULL to denote
something besides class membership)

— E/R

* Several tuples per entity, but only key attributes are
repeated

— 00
* Only one tuple per entity

25



