Indexes






Indexes

* Index = data structure used to speed access
to tuples of a relation, given values of one or
more attributes.



Declaring Indexes

* No standard!
e Typical syntax:

CREATE INDEX MovielIdx ON
Movie (MovieId) ;

CREATE INDEX CastsIdx ON
Casts (ActorId, Movield);



Types of Indexes

* Primary: index on a key
— Used to enforce constraints

* Secondary: index on non-key attribute



Using Indexes: Equality Searches

* Given a value v, the index takes us to only
those tuples that have v in the attribute(s) of

the index.
e What data structure would be useful here?



Using Indexes: Range Searches

* "Find all students with GPA > 3.0"
 What data structure(s) work here?



Range Searches

* "Find all students with GPA > 3.0"
* May be slow, even on sorted file
e Solution: Create an index file.

L, k1 k2 kN Index File
\\ \\
/ y \ \

Page 1 Page 2 Page 3 Page N Data File







B-trees

e Extension of binary search trees to n-way
search trees (where n > 2)

e Balanced (like red-black trees)



Why B-Trees Are Like,
So Great for DB Indexes

DBs are usually on disk, not RAM
— B-tree structure aligns with disk pages

— Hierarchical structure minimizes number of disk
reads.

Keeps info in sorted order for equality or
range searches.

Balanced tree structure gives fast searches,
insertions, deletions.



Definition

* B-tree of order dis a (2d+1) tree:

— Internal nodes have one more child (pointer) than
data elements (keys). Leaf nodes have no
children.

— Root has between 1 and 2d data elements.
— Non-root nodes have between d and 2d elements.
— All leaves are at the same depth in the tree.

— Has extended search property (binary search tree
property extended to multiway tree)



Algorithms: Search



Algorithms: Insert

* First, find leaf node where data would go.
* Insert(data, node):

— |f data can fit in node, add it to the node.
— If causes overflow:
* split node at the median value.

e Everything less than median becomes new leaf node.

* Everything greater than median becomes new leaf node.

* Promote median to parent node; call insert(median,
parent) [may create new parent node if there is no parent]



Algorithms: Delete

 Search for item to delete
e If at leaf node, delete the item

— Rebalance up from leaf if necessary

* |f at internal node, swap with largest child in
left sub-tree (analogous to BST deletion swap)

— Rebalance if necessary



