Query Optimization

Query optimization

* Given an SQL query, the query optimizer tries
to figure out the order of operations that will
make the query run the fastest.

* Possible because usually there is more than
one way to run a query.

Why query optimization?

e SQL is declarative.

— SQL only says what to retrieve from the DB, not
the details of how.

— Unlike most programming languages (though
there are other declarative languages).

* Good query optimization can make a big
difference.

Example

Students(R#, First, Last)
Enrolled(R#, CRN)

SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

T, (O crn=12345 (SPAE))

Example

e SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

I
G

>

Student Enrolled

Example

e SELECT First, Last
FROM Students NATURAL JOIN Enrolled
WHERE CRN=12345

n T
] P
P o)

Student Enrolled Student Enrolled

Canonical Form

* Make all JOINs explicit with WHERE clauses.
— S NatJoin T ==S Join T WHERE...
—SJoin TON ...==SJoin T WHERE...

* Perform selections and projections as early as
possible.

Relational algebra

* How do we know
T | (O cry=12345 (SPE))
Is equal to
T (SPAO cgy-gp3ss (E)) 7

* Yay 172 proofs!

Example

* Prove

o,(R1U R2) _ o,(R)U0o,(R2)

Back to query optimization

* Projections and selections
— Perform them early (but carefully) to reduce

* number of tuples
* size of tuples (remove attributes)

— Project out (remove) all attributes except those
requested or required (e.g., needed for joins)

How does a join work?

* Three main algorithms:
— Nested loop join
— Sort-merge join

— Hash join

Nested loop join

For each tuplerin R do
For each tuplesin S do
If r and s satisfy the join condition
Then output the tuple <r,s>

Sort-Merge join

* Assume we want to join Rand S on some
attribute A.

e Sort both Rand S by A.

e Perform two linear scans of R and S.

— Works well with no duplicate values of A.

Hash join

e JoinRand S on A.

 Make a hash table of the smaller relation,
mapping A to the appropriate row(s) of R (or
S).

* Scan the larger relation to find the relevant
rows using the hash table.

Equivalence of expressions

* Natural joins:

— commutative R« S=Sp<R
— associative (R S)><T =R><1(S><T)

* How many different join orderings are there
for n relations?

Equivalence of expressions

* Natural joins:

— commutative R« S=Sp<R
— associative (R S)><T =R><1(S><T)

* How many different join orderings are there
for n relations?

— Catalan number = O(4/n)

Join(C,D)

Join(B,C)

Join(C,D)

19

Picking good join orders

* Query optimizer generates a few potential
orders

— Doesn't evaluate all O(4”n) possibilities.

— Prefers deep trees over bushy trees.
* How many left-deep trees are there for n relations?

* Query optimizer tries to estimate the cost for
each query plan, relying on

— Statistics maintained for relations and indexes
(size of relation, size of index, number of distinct
values in columns, etc)

— Formulas to estimate selectivity of predicates (the
probability that a randomly-selected row will be
true for a predicate)

— Formulas to estimate CPU and |/O costs of
selections, projections, joins, aggregations, etc.

Views

A view is a stored SQL query that can be used
as if it were a relation.
Only the query itself is stored, not the results.

— Results are re-computed whenever the view is
used.

Saves typing, but not time.

CREATE VIEW name AS
SELECT...FROM...WHERE

Materialized Views

A materialized view stores the results of the
qguery rather than the query itself.

Results are re-computed as needed.

Saves typing and usually time, at the cost of
space.

CREATE MATERIALIZED VIEW name AS
SELECT...FROM...WHERE

— In many RDBMSs, but not SQLite.

