
Events	and	Timers	and	Listeners,	
Oh	My!	



Control	flow	

•  "Tradi;onal"	program:	one	statement	at	a	
;me,	line	by	line.	

•  Threaded	program:	CPU	determines	execu;on	
order	
– Controlled	with	synch,	wait/no;fyAll	

•  Event-driven	program:	controlled	by	the	order	
that	"events"	happen	



•  Event-driven	programming	is	oJen	seen	in	
threaded	programs,	as	another	model	of	
communica;on	between	threads.	
	

	
Thread	1	
…	
Event	happened!	
…	
…	
Another	event	
happened!	

Thread	2	
Handle	this	event	

Thread	3	
Handle	this	event	



•  An	"event"	is	something	that	happens	in	your	
program	that	another	piece	of	code	wants	to	
be	aware	of.	
– Simple	things:	mouse	clicks,	key	presses,	…	
– Complex	things:	file	is	done	loading,	calcula;on	is	
finished,	received	request	from	a	client	

•  Event-driven	programming	is	no	beTer	or	
worse	than	other	models	of	thread	
communica;on,	it's	just	different.	
– OJen	forced	on	programmers	because	so	many	
graphics	libraries	use	it.	



•  Sources,	event	objects,	and	listeners.	

	

Event	
source	

Event	
listener	

Event	
listener	

Event	
listener	

event	
object	

Event	
source	event	

object	

(Event)	Listeners	
are	objects	that	
have	registered	to	
receive	certain	
types	of	events	
from	event	
sources.		

Event	objects	are	
objects	that	are	sent	to	
the	listeners	that	
contain	informa8on	
about	the	event	that	
occurred	(e.g.,	where	
the	mouse	was	clicked).	



•  JBuTon:	a	class	that	models	a	buTon.	
– Also	an	event	source.	

•  HelloWorldListener:	a	class	designed	to	listen	for	
buTon	presses.	
–  The	code	that	runs	when	the	ac;on	happens	(inside	
ac;onPerformed)	is	called	an	event	handler.	

•  Ac;onEvent	(arg	type	to	ac;onPerformed)	is	the	
event	class.	
– Whenever	the	JBuTon	is	pushed,	it	triggers	(fires)	an	
Ac;onEvent.	

– Has	methods	for	determining	which	object	caused	the	
event,	when	it	happened,	etc.	

•  Connected	through	addAc;onListener	func;on.	



•  Purpose	of	events:	separate	the	code	that	
causes	the	event	from	the	code	that	handles	
the	event.	

•  Lets	one	event	source	trigger	mul;ple	ac;ons	
–  JBuTon	can	have	mul;ple	listeners	added.	

•  Lets	one	listener	listen	to	mul;ple	event	
sources.	
– Could	have	HelloWorldListener	connected	to	a	
many	buTons,	key	presses,	drop-down	menus,	
etc.	



•  Java	has	(many)	classes	for	Events:	
– Ac;onEvent,	MouseEvent,	KeyEvent,	…	

•  and	classes	for	Listeners:	
– Ac;onListener,	MouseListener,	KeyListener,	…	

•  We're	going	to	examine	just	buTons	and	the	
mouse	today.	





•  GameFrame:	represents	the	window	that	holds	
the	game.	
– Contains	a	"panel"	to	hold	the	moving	rectangles,	and	
a	JbuTon	to	start	the	game.	

•  GamePanel:	represents	the	moving	rectangles	
area.	
– moveShapesToLeJ:	moves	all	rectangles	to	the	right.	
– handleMouseClick:	event	handler	for	when	the	panel	is	
clicked.	

– paintComponent:	draws	the	rectangles	on	the	screen.	



Run	It	



Task	1:	Start	BuTon	

•  In	StartBuTonAc;onListener	
– Write	ac;onPerformed.	
–  This	method	should	call	
gameArea.moveShapesToLeJ().	

–  Then	call	repaint()	[tells	Java	to	redraw	the	rectangles]	
•  Uncomment	lines	to	aTach	listener	to	buTon.	
•  When	done,	you	should	be	able	to	click	the	
buTon	and	the	shapes	should	move	to	the	leJ.	



Task	2:	Mouse	clicks	

•  In	GameMouseClickListener:	
– Write	mouseReleased.	
– This	should	call	handleMouseClick.	

•  arguments	should	be	event.getX()	and	event.getY()	

– Call	repaint() 	[asks	Java	to	redraw	the	rectangles]	
•  In	GameFrame	constructor,	uncomment	lines	
to	aTach	the	listener	to	the	mouse.	



Task	3:	Automa;c	scrolling	

•  We	don't	want	to	click	the	start	buTon	to	
advance	the	rectangles.	

•  We	need	a	way	to	automa;cally	fire	events	in	
rapid	succession.	
–  In	order	to	repeatedly	call	moveShapes	every	few	
milliseconds	to	give	the	illusion	of	scrolling.	



Solu;on:	Timer	

•  Timer	objects	will	fire	an	Ac;onEvent	
repeatedly	every	x	milliseconds.	

•  Timer	t	=	new	Timer(x,	<ac;on	listener>);	
•  t.start();	



•  In	MoveShapesAc;onListener:	
– Write	ac;onPerformed	to	do	two	things:	

•  call	moveShapesToLeJ	on	gameArea	
•  call	repaint()	[request	that	Java	redraw	the	rectangles]	

•  Rewrite	start	buTon	listener:	
– ac;onPerformed	should	do	three	things:	

•  Create	a	new	MoveShapesAc;onListener	
•  Create	a	;mer:	args	are	10	(milliseconds),	and	your	
move	shapes	ac;on	listener.	
•  Start	the	;mer.	


