Rule 1:

Every function definition (including anonymous function definitions) creates a new closure where
¢ the code part of the closure points to the function's code
¢ the environment part of the closure points to the frame that was current when the function was
defined (the frame we are currently using to look up variables)

Rule 2:

Every function call creates a new frame where
* the new frame’s table contains bindings for all of the function’s arguments and their corresponding
values
* the new frame’s pointer points to the same frame that the function closure’s environment pointer
points to.
o Thatis, if the definition of a function f created a closure where the environment part of the
closure points to a frame R, then whenever f is called, a new frame is created that will point to R
as well.
Rule 2a:

Every evaluation of a let expression creates a new frame where
* the new frame’s table contains bindings for all of the let expression’s variables and their
corresponding values
* the new frame’s pointer points to the frame where the let expression was defined

Practice:

(define (f g) (let ((x 3)) (g 2)))
(define x 4)

(define (h y) (+ x y))

(define z (f h))

PROGRAM 1

(define (f x)
(lambda (y) (+ x V)

(define g (f 3)
(define z (g 4)
PROGRAM 2
(define (f qg)

(let ((x 2))
(9 x)))

(define (h y)
(let ((x 3))
(lambda (y) (+ x Y))))

(define m (f h))
(define n (m 7))



