foldr, end of lexical scoping



Review of foldr

foldr (sometimes also called accumulate, reduce, or inject) is
another very famous iterator over recursive structures

Accumulates an answer by repeatedly applying £ to answer so far

— (foldr f base (x1 x2 x3 x4)) computes
(f x1 (£ x2 (£f x3 (f x4 base))))

(define (foldr f base 1lst)
(Lf (null? 1lst) base
(f (car 1lst)
(foldr £ base (cdr 1lst)))))

— This version “folds right”; another version “folds left”
— Whether the direction matters depends on £ (often not)



Examples with foldr

These are useful and do not use “private data”

(define (f1l 1lst) (foldr + 0 1lst))
(define (f£2 1st)
(foldr (lambda (x y) (and (>= x 0) y)) #t 1st))

These are useful and do use “private data”

(define (£3 lo hi 1lst)
(foldr
(lambda (x y)
(+ (if (and (>= x 1lo) (<= x hi)) 1 0) vy))
0 1lst))

(define (f4 g lst)
(foldr (lambda (x y) (and (g x) y)) #t 1lst))



Lexical scoping vs dynamic scoping

* The alternative to lexical scoping is called
dynamic scoping.

* In dynamic scoping, if a function f references a

non-local variable x, the language will look for x
in the function that called f.

— If it's not found, will look in the function that called
the function that called f (and so on).

e Contrast with lexical scoping, where the language

would look for x in the scope where f was
defined.



Why lexical scope?

1. Function meaning does not depend on variable names used

Example: Can change body to rename a variable qinstead of x

— Lexical scope: guaranteed to have no effects
Dynamic scope: might change function

(define (f y)
(let ((x (+ y 1)))
(lambda (z) (+ xy z2)))

When the anonymous function that f returns is called, in lexical
scoping, we always know where the values of x, y, and z will be (what
frames they're in). With dynamic scoping, x and y will be searched for
in the functions that called the anonymous function, so who knows
where they'll be.



Why lexical scope?

1. Function meaning does not depend on variable names
used

Example: Can remove unused variables in lexical scoping
— Dynamic scope: May change meaning of a function (weird)

(define (f qg)
(let ((x 3))
(g 2)))

— You would never write this in a lexically-scoped language,
because the binding of x to 3 is never used.

* (No way for g to access this particular binding of x.)

— In a dynamically-scoped language, g might refer to a non-local
variable x, and this binding might be necessary.



Why lexical scope?

2. Easy to reason about functions where they're
defined.

(define x 1)
(define (f y)

(+ x y))
(define g

(let ((x "hello"))
(£ 4))

Example: Dynamic scope tries to add a string to a number
(b/c in the call to (+ x y), x will be "hello")



Why lexical scope?

3. Closures can easily store the data they need
— Many more examples and idioms to come

(define (gteq x) (lambda (y) (>=y x)))
(define (no-negs 1lst) (filter (gteq 0) 1st))

 The anonymous function returned by gteq references a non-local
variable x.

* Inlexical scoping, the closure created for the anonymous function will
point to gteq's frame so x can be found.

* In dynamic scoping, x would not be found at all.



Does dynamic scope exist?

Lexical scope for variables is definitely the right default
— Very common across Ianguages

Dynamic scope is occasionally convenient in some

situations

— So some languages (e.g., Racket) have special ways to do it
— But most don’t bother

Historically, dynamic scoping was used more frequently in
older languages because it's easier to implement than
lexical scoping.

— Strategy: Just search through the call stack until variable is
found. No closures needed.

— Call stack maintains list of functions that are currently being
called, so might as well use it to find non-local variables.



lterators made better

* Functions like map and £ilter are much more
powerful thanks to closures and lexical scope

* Function passed in can use any “private” data in its
environment

e |terator (e.g., map or filter) “doesn’t even know the
data is there”

— |t just calls the function that it's passed, and that
function will take care of everything.



