Programming Languages
Lecture 5

Continuation of nested functions
and why having no mutation is

super cool ar

d how dynamic

typing is totally awesome (I'm
really tired)

Review

* Use let for local variable definitions:
(let ((varl wvaluel)
(var2 value2) ...)
expression)

Review

e Use define for local function definitions:

(define (¥ (x1 x2 .. xn)
(define (f1 (yl1 y2 .. yn) expr)
(define (f2 (z1 z2 .. zn) expr)
expr)

Without looking at the handout...

Let's create a function that produces a list of increasing
numbers:

Ex: (count-up 1 5) producesthelist ' (1 2 3 4 5)

(define (count-up from to)
.. what goes here? ..

Base case? Recursive case?

(Inferior) Example

(define (count-up-from-one x)
(define (count-up from to)
(Lf (= from to)
(cons from '())
(cons from (count-up (+ 1 from) to))))
(count-up 1 x))

* This shows how to use a local function binding, but:
— Will show a better version next
— count-up might be useful elsewhere

Nested functions, better

* Functions can use any binding in the environment
where they are defined:

— Bindings from “outer” environments
e Such as parameters to the outer function

— Earlier bindings in let* (but not let)

* Usually bad style to have unnecessary parameters
— Like to in the previous example

(define (count-up-from-one-better x)
(define (count-up from)
(1f (= from x)
(cons from ' ())
(cons from (count-up (+ 1 from)))))
(count-up 1))

Avoid repeated recursion

Consider this code and the recursive calls it makes

— Don’t worry about calls tonull?, car, and cdr because
they do a small constant amount of work

(define (bad-max 1lst)

(cond

((null? (cdr 1lst))
(car 1lst))

((> (car 1lst) (bad-max (cdr 1lst)))
(car 1lst))

(#t
(bad-max (cdr 1lst)))))

(define x (bad-max ' (50 49 48 .. 1)))
(define y (bad-max '(1 2 3 .. 50)))

((> (car 1lst) (bad-max (cdr 1lst)))
Fast vs. e o))

unusable (#t (bad-max (cdr 1lst)))))

(bm ' (50..) = (bm '(49.) — (bm '(48.) —» — —> (bm '(1))

(bm '(1.) v (bm '(2.) i: (bm ' (3.) F T (bm ' (50))
(bm ' (3.) P P <D 50

(bm ' (2..) i: (bm ' (3..) <> < < times

en G L Lon 1 (50))

Math never lies

Suppose one bad-max call’s if-then-else logic and calls to
car,

cdr, and null? take 107 seconds

— Then (bad-max ' (50 49 .. 1)) takes50x 107 seconds
— And (bad max '(1 2 .. 50)) takes2.25x 108 seconds

* (over 7 years)
* (bad-max ' (55 54 .. 1)) takesover 2 centuries
* Buying a faster computer won’t help much ©

The key is not to do repeated work that might do repeated
work that might do...

— Saving recursive results in local bindings is essential...

Efficient max

(define (good-max 1lst)

(cond
((null? (cdr 1lst))
(car 1lst))
(#t

(let ((max-of-cdr (good-max (cdr 1st))))
(1f (> (car 1lst) max-of-cdr)
(car 1lst)
max-of-cdr)))))

Fast vs. fast

(let ((max-of-cdr (good-max (cdr 1st))))
(1f (> (car 1lst) max-of-cdr)
(car l1lst)
max-of-cdr))

(gm '(50..) = (gm '(49.) — (gm '(48.) —* > —> (gm '(1))

(gm '(1..) = (gm '(2.) —® (gm '(3.) —» —» —> (gm '(50))

A valuable non-feature: no mutation

Those are all the features you need (and should use) on projl

Now learn a very important non-feature
— Huh?? How could the lack of a feature be important?

— When it lets you know things other code will not do with your
code and the results your code produces

A major aspect and contribution of functional programming:

Not being able to assign to (a.k.a. mutate) variables or parts of
tuples and lists

Suppose we had mutation...

; Recall that sort-pair takes a pair and returns

; an equivalent pair so that car > cdr.
(define x '(4 . 3))

(define y (sort-pair x))
; somehow mutate (car x)
;to hold 5

(define z (car y))

e Whatis z?

— Would depend on how we implemented sort-pair
* Would have to decide carefully and document sort-pair

— But without mutation, we can implement “either way”
* No code can ever distinguish aliasing vs. identical copies
* No need to think about aliasing: focus on other things
* Can use aliasing, which saves space, without danger

Interface vs. implementation

In Racket, these two implementations of sort-pair are
indistinguishable

— But only because tuples are immutable

— The first is better style: simpler and avoids making a new pair in the
then-branch

(define (sort-pair pair)
(Lf (> (car pair) (cdr pair))
pair
(cons (cdr pair) (car pair))))

(define (sort-pair pair)
(1f (> (car pair) (cdr pair))
(cons (car pair) (cdr pair))
(cons (cdr pair) (car pair))))

An even better example

(define (my-append lstl 1lst2)
(if (null? 1lstl)
1st2
(cons (car 1lstl) (append (cdr 1lstl) 1lst2))))
(define x '(2 4))
(define y '(5 3 0))
(define z (append x y))

x = [2] P[4~
y —» | 5| +» 3| —» 0|
—

(can’t tell,
Z ;F-qu;-=2“‘ but it’s the

or first one)

{
\

Vovoy
¥
v
N\

Racket vs. C++ on mutable data

In Racket, we create aliases all the time without thinking
about it because it is impossible to tell where there is
aliasing
— Example: edr is constant time; does not copy rest of the list
— So don’t worry and focus on your algorithm

In C++ (and sometimes Python), we have to think about the
implications of mutability, which often forces us to copy
manually.

— Hence why we have pass by reference and pass by value

— And then you have pass by const reference to simulate pass by
value but not waste time copying...
e e.g.,, compare(const string& s1, const string& s2)

Dynamic typing vs static typing

Declaring functions in C++ vs Python

C++ uses static typing: most code can be checked at compile-time to
make sure rules involving types are not violated.

int double(int n) {
return 2 * n;

}

Python uses dynamic typing: most code cannot be checked for type
errors at compile-time; this has be delayed until run-time.

def double(n):
return 2 * n

Dynamic typing

e Racket (like most Scheme or Lisp dialects) is
dynamically typed.

* Some characteristics of dynamic typing:

— Values have types, but variables do not.
e Avariable can refer to different types during its lifetime.

— Most type-error bugs cannot be found before the program
is run, and not until the offending line of code is
encountered.

* Possible to write code with type errors that aren't discovered for a
long time, if buried in code that isn't executed often.

— Traditionally (but not always), dynamically-typed
languages are interpreted, whereas statically-typed
languages are compiled.

Some good things about dynamic
typing

* Enables polymorphism (enabling code to
handle any data type).

— Example: Calculating the length of a list.

(define (length 1lst)
(1f (null? 1lst) 0 (+ 1 (length (cdr 1lst)))))

versus

int length_int array(int_node* array) {
if (array->next == NULL) return O;
else return 1 + length int array(array->next);

}

Easier to create flexible data
structures

In Racket, it's easy to create a list that can contain any
other kind of data structure:

— List of integers: '(1 2 3)

— List of booleans: '(#f #f #t #f #t)

— List of strings: '("a" "b" "c")

— List of mixed types: '("a" 42 #f)

— List of really mixed types: (17 (3 #f) ("hi")-9 (1 (2 (3) 4 ())))
Also, all of these lists will work with our length function!

Mixing types in a single data structure is not easy in
statically-typed languages.

In C++, arrays or vectors must all hold the same type.

"Manual" type-checking

* Dynamically-typed languages often have some way for
the programmer to discover the type of a variable.
* |In Racket (all of these return #t or #f):

— number?
* also integer?, rational?, real?

— 1list?

— pair?

— string?
— boolean?

« Enables a single function to do different things
depending on the type of an argument.

Length of a list vs length of nested lists

* For "regular” list
— if empty list, return O
— else return 1 + length of the cdr of the list.

* For a list with possible nested lists...
— if empty list, return O
— if the car of the list is a list... do what?
— else (car is not a list)... do what?

Length of a list vs length of nested lists

* For "regular” list
— if empty list, return O
— else return 1 + length of the cdr of the list.

* For a list with possible nested lists...
— if empty list, return O
— if the car of the list is a list

. r%turn length of the car (which is a list) plus length of
cdr

— else (car is not a list)
 return 1 + length of the cdr

Length of a list vs length of nested lists

(define (length-nested lst)
(cond ((null? 1lst) 0)
((list? (car 1lst))
(+ (length-nested (car 1lst))
(length-nested (cdr 1lst))))
(#t (+ 1 (length-nested (cdr 1lst))))))

Side effects

* |In programming, a function has a side effect if it
modifies some state or has an observable interaction
with functions outside of itself (other functions or the

outside world).

 Mutation is an example of a side effect.
— Also: printing to the screen, modifying files, etc

* Functional programming (in Racket, Scheme, LISP)
traditionally avoids side effects as much as possible.

— Makes it much simpler to reason about how a program
works.

— Without side effects, calling a function with a fixed set of
arguments is guaranteed to always return the same
value.

Side effects

* |n Racket, function bodies may contain more than one
expression, if the extra expressions come first and are

evaluated only for their side effects.
— In "pure" functional programming, you don't have side
effects.
— But it's nice to have this facility at times.
— For debugging, can use (display <whatever>) and (newline)

 Example:

(define (length 1lst)
(display lst)
(newline)
(if (null? 1lst) 0 (+ 1 (length (cdr 1lst)))))

