Tail Recursion and Accumulators



Recursion

Should now be comfortable with recursion:
* No harder than using a loop (Maybe?)

e Often much easier than a loop

— When processing a tree (e.g., evaluate an arithmetic
expression)

— Avoids mutation even for local variables

* Now:
— How to reason about efficiency of recursion
— The importance of tail recursion
— Using an accumulator to achieve tail recursion
— [No new language features here]



Call-stacks

While a program runs, there is a call stack of function
calls that have started but not yet returned

— Calling a function £ pushes an instance of £ on the stack
— When a call to £ to finishes, it is popped from the stack
These stack frames store information such as
e the values of arguments and local variables

* information about “what is left to do” in the function
(further computations to do with results from other
function calls)

Due to recursion, multiple stack-frames may be calls to
the same function



Example  “500 7
(* n (fact (- n 1)))))
(fact 0)
(fact 1) (fact 1) => (*1_)
(fact 2) (fact2) => (* 2 || (fact2) => (* 2 )
(fact 3) (fact 3) => (* 3 _) || (fact 3) => (* 3 _) || (fact 3) => (* 3 _)

(fact 0) => 1

(fact 1) => (* 1 _)

(fact 1) => (* 1 1)

(fact 2) => (* 2 _)

(fact 2) => (* 2 _)

(fact 2) => (* 2 1)

(fact 3) => (* 3 _)

(fact 3) => (* 3 _)

(fact 3) => (*3_)

(fact 3) => (*3 2)




What's being computed

(fact 3)
=> (* 3 (fact 2))
=> (* 3 (* 2 (fact 1)))
=> (* 3 (* 2 (* 1 (fact 0))))
=> (* 3 (* 2 (* 1 1)))
=> (* 3 (* 2 1))
=> (* 3 2)

=>6



Example Revised

(define (fact2 n)

(define (fact2-helper n acc)
(if (= n 0) acc
(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1))
Still recursive, more complicated, but the result of

recursive calls is the result for the caller (no
remaining multiplication)



(define (fact2 n)

Example Revised

(define (fact2-helper n acc)

(if (= n 0) acc

(fact2-helper (- n 1) (* acc n))))

(fact2-helper n 1)) (f2-h 1 6)
(f2-h 2 3) (f-h 2 3) => _
(f2-h 3 1) (f-h3 1) =>_ (f-h 3 1) =>_
(fact2 3) (fact2 3) => _ (fact2 3) => _ (fact2 3) => _
(f2-h 0 6) (f2-h 0 6) => 6
(f2-h 1 6) => _ (f2-h 1 6) => _ (f2-h 16) =>6
(f-h23) => _ (f2-h 2 3) => _ (f2-h 2 3) => _ (f2-h 2 3) => 6
(f-h 3 1) =>_ (f-h 3 1) =>_ (f-h 3 1) =>_ (f-h 3 1) =>_
(fact2 3) => _ (fact2 3) => _ (fact2 3) => _ (fact2 3) => _




What's being computed

(fact2 3)
=> (fact2-helper 3 1)
=> (fact2-helper 2 3)
=> (fact2-helper 1 6)
=> (fact2-helper 0 6)
=> 6



An optimization

It is unnecessary to keep around a stack-frame just so it can
get a callee’s result and return it without any further

evaluation

Racket recognizes these tail calls in the compiler and treats

them differently:
— Pop the caller before the call, allowing callee to reuse the same
stack space
— (Along with other optimizations,) as efficient as a loop

(Reasonable to assume all functional-language
implementations do tail-call optimization)

includes Racket, Scheme, LISP, ML, Haskell, OCaml...



What really happens

(define (fact2 n)

(define (fact2-helper n acc)
(if (= n 0) acc
(fact2-helper (- n 1)

(fact2-helper n 1))

(* acc n))))

(fact

3)

(£2-h 3 1)

(£2-h 2 3)

(£2-h 1 6)

(£2-h 0 6)




Moral

Where reasonably elegant, feasible, and important,
rewriting functions to be tail-recursive can be much more
efficient

— Tail-recursive: recursive calls are tail-calls

* meaning all recursive calls must be the last thing the calling function
does

* no additional computation with the result of the callee

There is also a methodology to guide this transformation:
— Create a helper function that takes an accumulator
— Old base case's return value becomes initial accumulator value
— Final accumulator value becomes new base case return value



(de(f.ifne( (fa‘ét;' Ii) Old base case's return

1 = n . el

(* n (fact](- n 1))))) value becomes initial
accumulator value.

(define (fact2 |n)

(define (fac§2-helper n acc)
(if (= n 0)} acc
(fact2-hellper nl) (*¥ acc n))))

(fact2-helperin 1))

Final accumulator value
becomes new base case
return value.



Another example

(define (suml 1st)
(if (null? 1lst) O
(+ (car 1lst) (suml (cdr 1st)))))

(define (sum2 1st)
(define (sum2-helper 1lst acc)
(if (null? 1lst) acc

(sum2-helper (cdr 1lst) (+ (car 1st) acc))))

(sum2-helper 1lst 0))



And another

(define (revl 1lst)
(if (null? 1lst) ' ()
(append (revl (cdr 1lst)) (list (car 1st)))))

(define (rev2 1lst)
(define (rev2-helper 1lst acc)
(1f (null? 1lst) acc

(rev2-helper (cdr 1lst) (cons (car 1lst) acc))))

(rev2-helper 1lst '()))



Actually much better

(define (revl 1lst) ; Bad version (non T-R)
(i1f (null? 1lst) '()
(append (revl (cdr 1lst)) (list (car 1st)))))

For fact and sum, tail-recursion is faster but both ways
linear time

The non-tail recursive rewv is quadratic because each
recursive call uses append, which must traverse the first list
— And 1+2+ ..+ (length-1) is almost length * length / 2
— Moral: beware append, especially if 15t argument is result of a
recursive call
cons is constant-time (and fast), so the accumulator version
rocks



Tail-recursion == while loop with local
variable

(define (fact2 n)
(define (fact2-helper n acc)
(1f (= n 0) acc
(fact2-helper (- n 1) (* acc n))))
(fact2-helper n 1))

def fact2(n):

acc = 1

while n !'= 0:
acc = acc * n
n=n-1

return acc



Tail-recursion == while loop with local
variable

(define (sum2 1lst)
(define (sum2-helper lst acc)
(1f (null? 1lst) acc
(sum2-helper (cdr 1lst) (+ (car 1st) acc))))

(sum2-helper 1lst 0))

def sum2 (lst) :
acc =0
while 1lst '= []:
acc = 1lst[0] + acc
1st 1st[1l:]
return acc



Tail-recursion == while loop with local
variable

(define (rev2 1lst)
(define (rev2-helper lst acc)
(1f (null? 1lst) acc
(rev2-helper (cdr 1st) (cons (car 1lst) acc))))

(rev2-helper 1lst '()))

def rev2(lst) :
acc = []
while 1lst '= []:
acc = [1lst[0]] + acc
1st 1st[1l:]
return acc



Always tail-recursive?

There are certainly cases where recursive functions
cannot be evaluated in a constant amount of space

TN

Example: functions that processtrees 1 2 /\ 5

— Lists can be used to > 4
representtrees: ' ((1 2) ((3 4) 5))

In these cases, the natural recursive approach is the
way to go

— You could get one recursive call to be a tail call, but
rarely worth the complication



Precise definition

If the result of (£ x) isthe “return value” for the enclosing function body,
then (£ x) is a tail call

i.e., don't have to do any more processing of (f x) to end function

Can define this notion more precisely...

A tail call is a function call in tail position

The single expression (ignoring nested defines) of the body of a function
is in tail position.

If (1f test el e2) isintail position, then el and e2 are in tail
position (but test is not). (Similar for cond-expressions)

If a let-expression is in tail position, then the single expression of the
body of the 1et is in tail position (but no variable bindings are)

Arguments to a function call are not in tail position



Are these functions tail-recursive?

(define (get-nth lst n)
(if (= n 0) (car 1st)
(get-nth (cdr 1st) (- n 1))))

(define (good-max 1l1lst)

(cond
((null? (cdr 1st))
(car 1lst))
(#t

(let ((max-of-cdr (good-max (cdr 1lst))))
(if (> (car 1lst) max-of-cdr)
(car 1lst) max-of-cdr)))))



Try these...

Write a tail-recursive max function (i.e., a function that returns the
largest element in a list).

Werite a tail-recursive Fibonacci sequence function (i.e., a function
that returns the n'th number of the Fibonacci sequence).

(fib 1) => 1
(fib 2) => 1
(fib 3) => 2
(fib 4) => 3
(fib 5) => 5

In general, (£ib n) = (+ (fib (- n 1)) (fib (- n 2)))



(define (maxtr 1l1lst)
(define (maxtr-helper lst max-so-far)
(cond
((null? 1lst) max-so-far)
((> max-so-far (car 1lst))
(maxtr-helper (cdr lst) max-so-far))

(#t (maxtr-helper (cdr 1lst) (car 1lst)))))

(maxtr-helper (cdr 1lst) (car 1lst)))



(define (fib-tr n)
(define (fib-helper a b ctr)
(1f (= ctr n) a
(fib-helper b (+ a b) (+ ctr 1))))
(fib-helper 1 1 1))



