Programming Languages

Course Motivation
(or, why we are spending so much time on a
language that few people have heard of)



Course Motivation
(Did you think | forgot? ©)

Why learn languages that are quite different from Python
or C++7?

Why learn the fundamental concepts that appear in all
(most?) [anguages?

Why focus on functional programming?



What is the best kind of car?

What is the best kind of shoes?



Cars / Shoes

Cars are used for rather different things:
— Winning the Indy 500
— Taking kids to soccer practice
— Off-roading
— Hauling a mattress
— Getting the wind in your hair
— Staying dry in the rain

Shoes:
— Playing basketball
— Going to a dance
— Going to the beach




More on cars

A good mechanic might have a specialty, but also
understands how “cars” (not 2014 Honda Civics) work

— And that the syntax, | mean upholstery color, isn’t essential

A good mechanical engineer really knows how cars work,
how to get the most out of them, and how to design better
ones

 To learn how cars work, it may make sense to start with a
classic design rather than the latest model

— A popular car may not be a good car for learning how cars work



All cars are the same

* To make it easier to rent cars, it’s great that they
all have steering wheels, brakes, windows,
headlights, etc.

— Yet it’s still uncomfortable to learn a new one

 And maybe programming languages are more
like cars, trucks, boats, and bikes

e So are all programming languages really the
same?



Are all languages the same?

Yes:
— Any input-output behavior implementable in language X
is implementable in language Y [Church-Turing thesis]
— Python, C++, Racket, and a language with one loop and
three infinitely-large integers are “the same”
— Beware “the Turing tarpit”
Yes:
— Same fundamentals reappear: variables, abstraction,
recursive definitions, ...
No:

— The primitive/default in one language is awkward in
another



A note on reality

Reasonable questions when deciding to use/learn a
language:

 What libraries are available for reuse?

* What can get me a summer internship?
* What does my boss tell me to do?
 What is the de facto industry standard?
* What do | already know?

CS 360 by design does not deal with these questions
— You have the rest of your life for that
— And the answers will change in 5, 10, 15, 20 years anyway



Why semantics and idioms

This course focuses as much as it can on semantics and idioms

* Correct reasoning about programs, interfaces, and
interpreters or compilers requires a precise knowledge of
semantics

— Not “I feel that conditional expressions might work like this”
— Not “I like curly braces more than parentheses”

— Much of software development is designing precise interfaces;
what a PL means is a really good example

* |dioms make you a better programmer
— Best to see in multiple settings, including where they shine

— Even if | never show you language X, when you see that idiom in
the real world in language X, you'll understand it.



THE STRATFORD CHILDREN'S
‘ § SHAKESPEARE FESTIVAL %

Hamlet

The Tragedie of

- HAMLET,
The play Hamlet: fmmeofnenmmk
— |Is a beautiful work of art - S
— Teaches deep, eternal truths
— |Is the source of some well-known sayings
— Makes you a better person

Continues to be studied (even in college) centuries later
even though:

— The syntax is really annoying to many (yet rhythmic)

— There are more popular movies with some of the same
lessons (just not done as well)

— Reading Hamlet will not get you a summer internship



Functional Programming

Okay, so why do we spend so much time with functional languages,
i.e., languages where:

— Mutation is unavailable or discouraged
— Recursion expresses all forms of looping and iteration
— Higher-order functions are very convenient

Because:

1. These features are invaluable for correct, elegant, efficient
software (great way to think about computation)

2. Functional languages have always been ahead of their time
3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) ...



Ahead of their time

All of these were dismissed as “beautiful, worthless, slow
things PL professors make you learn in school”
e Garbage collection (now used in Python, Java, ...)

e Collections (i.e., lists) that can hold multiple data types at
once (Python, Java through generics, C++ through
templates)

* XML for universal data representation (like Racket/Scheme/
LISP)

* Higher-order functions (Python, Ruby, JavaScript, more
recent versions of C++, ...)

* Recursion (a big fight in 1960 about this — I’'m told ©)

Somehow nobody notices the PL people were right all along.



Recent Surge

Microsoft: F#, C# 3.0
Scala (Twitter, Linkedln, FourSquare)
Java 8 (2014), C++ (2014)

MapReduce / Hadoop (everybody)

— Avoiding side-effects essential for fault-tolerance
here

Haskell (dozens of small companies/teams)
Erlang (distributed systems, Facebook chat)



Why a surge?

My best guesses:
* Concise, elegant, productive programming

* JavaScript, Python, Ruby helped break the Java/
C/C++ hegemony

— And these functional languages do some things better

* Avoiding mutation is the easiest way to make
concurrent and parallel programming easier

e Sure, functional programming is still a small
niche, but there is so much software in the world

today even niches have room



s this real programming?

* The way we're using Racket in this class can make
the language seem almost “silly” precisely
because lecture and homework focus on
interesting language constructs

e “Real” programming needs file /0, string
operations, graphics, project managers, testing
frameworks, threads, build systemes, ...

— Functional languages have all that and more

— |f we used C++ or Python the same way, those
languages would seem “silly” too



Summary
No such thing as a “best” PL
There are good general design principles for PLs
A good language is a relevant, crisp interface for writing software
Software leaders should know PL semantics and idioms
Learning PLs is not about syntactic tricks for small programs

Functional languages have been on the leading edge for decades
— ldeas get absorbed by the mainstream, but very slowly

— Meanwhile, use the ideas to be a better programmer in C++ and
Python.



Programming Languages

Lexical Scope and Closures



Examples with foldr

These are useful and do not use “private data”

(define (f1l 1lst) (foldr + 0 1lst))
(define (f£2 1st)
(foldr (lambda (x y) (and (>= x 0) y)) #t 1st))

These are useful and do use “private data”

(define (£3 lo hi 1lst)
(foldr (lambda (x y)
(+ (if (and (>= x lo) (<= x hi)) 1 0) y)) O 1st))

(define (f4 g 1lst)
(foldr (lambda (x y) (and (g x) y)) #t 1lst))



Very important concept

We know that the body of a function can refer to non-local
variables

— i.e., variables that are not explicitly defined in that function or
passed in as arguments

So how does a language know where to find values of non-local
variables?

Look where the function was defined
(not where it was called)
There are lots of good reasons for this semantics
— Discussed after explaining what the semantics is
For HW, exams, and competent programming, you must “get this

This concept is called /exical scope (sometimes also called static
scope)

)



Example

-1- (define x 1)

-2- (define (f y) (+ x y))

-3- (define y 4)

-4- (define z (let ((x 2)) (£ (+ x y))))

Line 2 defines a function that, when called, evaluates body
(+ x y) inenvironment where x maps to 1 and y maps to the
argument

Call on line 4:
— Creates a new environment where x maps to 2.
— Looks up £ to get the function defined on line 2.
— Evaluates (+ x vy) inthe new environment, producing 6

— Calls the function, which evaluates the body in the old
environment, producing 7



Closures

How can functions be evaluated in old environments?
— The language implementation keeps them around as necessary

Can define the semantics of functions as follows:

e A function value has two parts

— The code (obviously)
— The environment that was current when the function was
defined
* This value is called a function closure or just closure.

* When a function £ is called, f's code is evaluated in the
environment pointed to by £'s environment pointer.

— (The environment is first extended with extra bindings for the
values of £'s arguments.)



Example

-1- (define x 1)

-2- (define (f y) (+ x y))

-3- (define y 4)

-4- (define z (let ((x 2)) (£ (+ x y))))

Line 2 creates a closure and binds £ to it:
— Code: “take argument y and have body (+ x v)”
— Environment: “x mapsto 1”

e (Plus whatever else has been previously defined, including £
for recursion)



What's happening behind the scenes

An environment is stored using frames.

A frame is a table that maps variables to values; a frame
also may have a single pointer to another frame.

When a variable is asked to be looked up in an
"environment," the lookup always starts in some frame.

If the variable is not found in that frame, the search
continues wherever the frame points to (another frame).

If the search ever gets to a frame without a pointer to
another frame (usually this is the "global" or "top-level"
frame), we report an error that the variable is undefined.



-1- (define x 1)

-2- (define (f y) (+ x y))

-3- (define y 4)

-4- (define z (let ((x 2)) (f (+ xv))))

global




-1- (define x 1)

-2- (define (f y) (+ x y))

-3- (define y 4)

-4- (define z (let ((x 2)) (£ (+ x vy))))




define x 1)

(
—-2- (define (f y) (+ x Vy))
-3- (define y 4)
-4- (define z (let ((x 2)) (f (+ x vy))))

args: y
code: (+ X V)




Rules for frames and environments

e Rule 1:

— Every function definition (including anonymous function
definitions) creates a closure where
* the code part of the closure points to the function's code

* the environment part of the closure points to the frame that was
current when the function was defined (the frame we are
currently using to look up variables)

args: y
code: (+ X V)




Rules for frames and environments

Rule 2:

— Every function call creates a new frame consisting
of the following:

* the new frame's table has bindings for all of the
function's arguments and their corresponding values

* the new frame's pointer points to the same
environment that f's environment pointer points to.



-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define q (£ 5)) ; changed this line




-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define g (£ 5)) ; changed this line




-1- (define x 1)
-2- (define (f y) (+ x y))
-3- (define g (£ 5)) ; changed this line




So what?

Now you know the rules. Next steps:

* (Silly) examples to demonstrate how the rule works for
higher-order functions

 Why the other natural rule, dynamic scope, is a bad idea

 Powerful idioms with higher-order functions that use this
rule

— This lecture: Passing functions to functions like £ilter
— Next lecture: Several more idioms



Example: Returning a function

1 (define x 1)

2 (define (f y) (lambda (z) (+ Xy 2)))
3 (define g (f 4))

4 (define z (g 6))

* Trust the rules:
— Evaluating line 2 binds f to a closure.

— Evaluating line 3 binds g to a closure as well.

e New frame is created for the call to f.

— Evaluating line 4 binds z to a number.
* New frame is created for the call to g.



(define x 1)

(define (f y) (lambda (z) (+ Xy 2)))
(define g (f 4))

(define z (g 6))

1
2
3
4

global




(define x 1)

(define (f y) (lambda (z) (+ xy 2)))
(define g (f 4))

(define z (g 6))

= W N R

args: y
code: (lambda (z)...




(define x 1)

(define (f y) (lambda (z) (+ Xy 2)))
(define g (f 4))

(define z (g 6))

= W N R

args: y
code: (lambda (z)...




(define x 1)

(define (f y) (lambda (z) (+ Xy 2)))
(define g (f 4))

(define z (g 6))

= W N R

args: y
code: (lambda (z)...




(define x 1)

(define (f y) (lambda (z) (+ Xy 2)))
(define g (f 4))

(define z (g 6))

= W N R

args: y
code: (lambda (z)...




(define x 1)

(define (f y) (lambda (z) (+ Xy 2)))
(define g (f 4))

(define z (g 6))

= W N R

args: y
code: (lambda (z)...




Rules for frames and environments

e Rule 2a:

— Every evaluation of a "let" expression creates a
new frame as follows:

* the new frame's table has bindings for all of the let
expressions variables and their corresponding values

* the new frame's pointer points to the frame where the
let expression was defined



Example: Passing a function

1 (define (f g) (let ((x 3)) (g 2)))
2 (define x 4)

3 (define (h y) (+ x vVy))

4 (define z (f h))

* Trust the rules:
— Evaluating line 1 binds f to a closure.
— Evaluating line 2 binds x to 4.
— Evaluating line 3 binds h to a closure.

— Evaluating line 4 binds z to a number.

* First, calls f (creates new frame), then evaluates "let" (creates
a new frame), then calls g (creates a new frame).



(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x vy))

(define z (f h))

1
2
3
4

global




(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x vy))

(define z (f h))

= W N R

args: y
code: (let ((x...




(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x Vy))

(define z (f h))

= W N R

args: y
code: (let ((x...




(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x Vy))

(define z (f h))

= W N R

args: y
code: (let ((x...




(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x vy))

(define z (f h))

= W N R

args: y
__%lghél__ code: (let ((X...

X 4
h




(define (f g) (let ((x 3)) (g9 2)))
(define x 4)

(define (h y) (+ x vy))

(define z (f h))

= W N R

args: y
__ngQQL—— code: (let ((X...

X 4
h




(define (f g) (let ((x 3)) (g 2)))

(define x 4)

(define (h y) (+ x vy))
(define z (f h))

= W N R

args: y
__global code: (let ((x...

4

6

=




