Interpreters

Implementing PLs

Most of the course is learning fundamental concepts for
using PLs
— Syntax vs. semantics vs. idioms
— Powerful constructs like closures, first-class objects,
iterators (streams), multithreading, ...
An educated computer scientist should also know some
things about implementing PLs
— Implementing something requires fully understanding its
semantics
— Things like closures and objects are not “magic”

— Many programming tasks are like implementing PLs
* Example: "connect-the-dots programming language" from 141

Ways to implement a language

Two fundamental ways to implement a programming
language X

 Write an interpreter in another language Y
— Better names: evaluator, executor
— Immediately executes the input program as it's read

 Write a compiler in another language Y to a third
language Z

— Better name: translator

— Take a program in X and produce an equivalent program in
Z.

First programming language?

e

J
Juvme s,
Jofun v
AR LV I
AR LR 1
LU e

First programming language?

Interpreters vs compilers

* Interpreters

— Takes one "statement" of code at a time and executes
it in the language of the interpreter.

— Like having a human interpreter with you in a foreign
country.
 Compilers

— Translate code in language X into code in language Z
and save it for later. (Typically to a file on disk.)

— Like having a person translate a document into a
foreign language for you.

Reality is more complicated

Evaluation (interpreter) and translation (compiler)
are your options

— But in modern practice we can have multiple layers of
both

A example with Java:

— Java was designed to be platform independent.

* Any program written in Java should be able to run on any
computer.

— Achieved with the "Java Virtual Machine"

* Anidealized computer for which people have written
interpreters that run on "real” computers.

Example: Java

Java programs are compiled to an "intermediate
representation” called bytecode.

— Think of bytecode as an instruction set for the JVM.

Bytecode is then interpreted by a (software)
interpreter in machine-code.

Complication: Bytecode interpreter can compile
frequently-used functions to machine code if it
desires.

CPU itself is an interpreter for machine code.

Sermon

Interpreter versus compiler versus combinations is about a
particular language implementation, not the language definition

So clearly there is no such thing as a “compiled language” or an
“interpreted language”

— Programs cannot “see” how the implementation works

Unfortunately, you hear these phrases all the time
— “Cis faster because it’'s compiled and LISP is interpreted”

— Nonsense: | can write a C interpreter or a LISP compiler, regardless of
what most implementations happen to do

— Please politely correct your bosses, friends, and other professors

Okay, they do have one point

In a traditional implementation via compiler, you do not need
the language implementation (the compiler) to run the
program

— Only to compile it

— So you can just “ship the binary”

But Racket, Scheme, LISP, Javascript, Ruby, ... have eval

— At run-time create some data (in Racket a list, in Javascript a
string) and treat it as a program

— Then run that program

— Since we don’t know ahead of time what data will be created
and therefore what program it will represent, we need a
language implementation at run-time to support eval

* Could be interpreter, compiler, combination

Digression

e Eval/Apply
— Built into Racket, traditionally part of all
LISP-ish interpreters

* Quote
— Also built-in

— Happens behind the scenes when you use the
single quote operator: '

Further digression: quoting

* Quoting (quote ..) or ' (..) is aspecial
form that makes “everything underneath”
symbols and lists, not variables and calls

— But then calling eval on it looks up symbols
as code

— So quote and eval are inverses

(List 'begin (quote (begin
(list 'print "hi") ——— (print "hi")
(list "+ 4 2)) (+ 4 2)))

Back to implementing a language

"((lambda (x) (+ x x)) 7)" Possible

Errors /
- warnings
Parsing \ Ccall

/\
Function Negate
P I
% 4 Constant
’,/~\\~ [Possible

E
var var 4) T
| warnings
IR ¥
Static checking Rest of

(what checked implementation
depends on PL)

Skipping those steps

If language to be interpreted (X) is very close to the
interpreter language (Y), then take advantage of this!

— Skip parsing? Maybe Y already has this.

— These abstract syntax trees (ASTs) are already ideal
structures for passing to an interpreter

We can also, for simplicity, skip static checking

— Assume subexpressions have correct types
* Do not worry about (add #£ “hi”)

— For dynamic errors in the embedded language, interpreter
can give an error message (e.g., divide by zero)

Write Racket in Racket

b RLIBELKS
RE
A .»'

Heart of the interpreter

Expression,
Procedure, Fval Apply Environment
Arguments

Mini-Eval: Evaluates an expression to a value (will call

apply to handle functions)
Mini-Apply: Takes a function and argument values and

evaluate its body (calls eval)

(define (mini-eval expr env)
iIsthisa expression?
If so, then call our special handler

for that type of expression.

)

What kind of expressions will we have?

 numbers

* variables (symbols)

 math functions +, -, *, etc

« others as we need them

* How do we evaluate a (literal) number?

e Just return it!

e Psuedocode for first line of mini-eval:

— If this expression is a number, then return it.

* How do we handle (add 3 4)7?

* Need two functions:
— One to detect that an expression is an addition.
— One to evaluate the expression.

(add 3 4)

* |s this an expression an addition expression?
(equal? 'add (car expr))

* Evaluate an addition expression:
(+ (cadr expr) (caddr expr))

You try

Add subtraction (e.g., sub)
Add multiplication (mul)
AdC
AdC

It's your programming language, so you may
name these commands whatever you want.

division (div)

exponentiation (exp)

(add 3 (add 4 5))

* Why doesn't this work?

(add 3 (add 4 5))

* How should our language evaluate this sort of
expression?
 We could forbid this kind of expression.

— Insist things to be added always be numbers.

* Or, we could allow the things to be added to
be expressions themselves.
— Need a recursive call to mini-eval inside eval-add.

You try

* Fix your math commands so that they will
recursively evaluate their arguments.

Adding Variables

Implementing variables

* Represent a frame as a hashtable.
* Racket's hashtables:

(define ht (make-hash))
(hash-set! ht key value)
(hash-has-key? ht key)
(hash-ref ht key)

Implementing variables

* Represent an environment as a list of frames.

N

hash table hash table
X->7 X->2

y->1 y->3

Implementing variables

* Two things we can do with a variable in our
programming language:
— Define a variable

— Get the value of a variable

Getting the value of a variable

* New type of expression: a symbol.

 Whenever mini-eval sees a symbol, it should
look up the value of the variable
corresponding to that symbol.

Getting the value of a variable

(define (lookup-variable-value var env)
Pseudocode:

w0

If our current frame has the variable bound,

wxe

then get its value and return it.

we

Otherwise, if our current frame has a frame

we

w0

pointer, then follow it and try the lookup
there.

wxe

Otherwise, throw an error.

we

Getting the value of a variable

(define (lookup-variable-value var env)
(cond ((hash-has-key? (car env) var)
(hash-ref (car env) var))
((not (null? env))
(lookup-variable-value var (cdr env)))
((null? env)

(error "unbound variable" var))))

Defining a variable

* Mini-eval needs to handle expressions that
look like (define variable exprl)

— exprl can contain sub-expressions

* Add two functions to the evaluator:
— definition?: tests if an expr fits the form of a
definition.
— eval-definition: extract the variable, recursively

evaluate exprl, and add a binding to the current
frame.

Implementing conditionals

e We will have one conditional in our mini-
language: ifzero

e Syntax: (ifzero exprl expr2 expr3)

* Semantics:
— Evaluate exprl, test if it's equal to zero.
— If yes, evaluate and return expr?2.
— If no, evaluate and return expr3.

Implementing conditionals

e Add functions ifzero? and eval-ifzero.

Designing our interpreter around mini-eval.
(define (mini-eval expr env)
Determines what type of expression expr is

Dispatch the evaluation of the expression to the
appropriate function

— number? -> evaluate in place

—symbol? ->lookup-variable-value

—add?/subtract?/multiply? -> appropriate
math func

—definition? ->eval-define

— ifzero? >eval-ifzero

Today

* Two more pieces to add:
— Closures (lambda? / eval-lambda)
— Function calls (call? / eval-call)

Implementing closures

* |In Mini-Racket, all (user-defined) functions
and closures will have a single argument.

* Syntax: (lambda var expr)

* Semantics: Creates a new closure (anonymous
function) of the single argument var, whose

body is expr.

(lambda var expr)

* Need a new data structure to represent a
closure.

* Why can't we just represent them as the list
(lambda var closure) above?

— Hint: What is missing? Think of environment
diagrams.

(lambda var expr)

* We choose to represent closures using a list of
four components:

— The symbol 'closure

— The argument variable (var)
— The body (expr)

— The environment in which this closure was
defined.

Evaluate at top level: (1ambda x (add x 1))

—

Arg: X
Code: (add x 1)

Our evaluator should return
'(closure x (add x 1) (#hash(..)))

Write lambda? and eval-lambda

* lambda? is easy.

e eval-lambda should:

— Extract the variable name and the body, but don’t
evaluate the body (not until we call the function)

— Return a list of the symbol ‘closure, the variable,
the body, and the current environment.

(define (eval-lambda expr env)

(list 'closure
(cadr expr)
(caddr expr)
env))

we

we

the variable
the body

Function calls

* First we need the other half of the eval/apply
paradigm.

e Remember from environment diagrams:

 To evaluate a function call, make a new frame
with the function's arguments bound to their
values, then run the body of the function

using the new environment for variable
lookups.

Apply

(define (mini-apply closure argval)
Pseudocode:

Make a new frame mapping the closure's argument
(i.e., the variable name) to argval.

Make a new environment consisting of the new frame
pointing to the closure's environment.

* Evaluate the closure's body in the new environment.

Apply

(define (mini-apply closure argval)
(let ((new-frame (make-hash)))
(hash-set! new-frame <arg name> argval)
(let ((new-env
<construct new environment>))

<eval body of closure in new-env>

)))

Apply

(define (mini-apply closure argval)
(let ((new-frame (make-hash)))
(hash-set! new-frame (cadr closure) argval)
(let ((new-env
(cons new-frame (cadddr closure))))

(mini-eval (caddr closure) new-env))))

Function calls

e Syntax: (call exprl expr2)

* Semantics:
— Evaluate exprl (must evaluate to a closure)
— Evaluate expr2 to a value (the argument value)

— Apply closure to value (and return result)

You try it

* Write call? (easy)
* Write eval-call (a little harder)

— Evaluate exprl (must evaluate to a closure)
— Evaluate expr2 to a value (the argument value)
— Apply closure to value (and return result)

* When done, you now have a Turing-complete
language!

; expr looks like
; (call exprl expr2)
(define (eval-call expr env)
(mini-apply
<eval the function>

<eval the argument>)

(define (eval-call expr env)
(mini-apply
(mini-eval (cadr expr) env)

(mini-eval (caddr expr) env)))

Magic in higher-order functions

The “magic”: How is the “right environment”
around for lexical scope when functions may
return other functions, store them in data
structures, etc.?

Lack of magic: The interpreter uses a closure
data structure to keep the environment it will
need to use later

s this expensive?

* Time to build a closure is tiny: make a list with
four items.

e Space to store closures might be large if
environment is large.

Interpreter steps

* Parser

— Takes code and produces an intermediate
representation (IR), e.g., abstract syntax tree.

e Static checking

— Typically includes syntactical analysis and type
checking.

* Interpreter directly runs code in the IR.

Compiler steps

Parser
Static checking

Code optimizer

— Take AST and alter it to make the code execute
faster.

Code generator

— Produce code in output language (and save it, as
opposed to running it).

Code optimization

// Test if n is prime
boolean isPrime(int n) {
for (int x = 2; x < sqrt(n); x++) {
if (n % x == 0) return false;
}

return true;

}

Code optimization

// Test if n is prime
boolean isPrime(int n) {
double temp = sqrt(n);
for (int x = 2; x < temp; x++) {
if (n % x == 0) return false;
}

return true;

}

Common code optimizations

* Replacing constant expressions with their
evaluations.

* Ex: Game that displays an 8 by 8 grid. Each cell
will be 50 pixels by 50 pixels on the screen.

— int CELL_WIDTH = 50;
—int BOARD_WIDTH =8 * CELL_WIDTH;

Common code optimizations

* Replacing constant expressions with their
evaluations.

* Ex: Game that displays an 8 by 8 grid. Each cell
will be 50 pixels by 50 pixels on the screen.

—int CELL_WIDTH = 50;
— int BOARD_WIDTH = 400;

* References to these variables would probably
replaced with constants as well.

Common code optimizations

* Reordering code to improve cache performance.

for (int x = 0; x < HUGE NUMBER; x++) {
huge array[x] = f(x)

another huge array[x] = g(x)

}

Common code optimizations

* Reordering code to improve cache performance.

for (int x = 0; x < HUGE NUMBER; x++) {
huge array[x] = f(x)

}

for (int x = 0; x < HUGE_ NUMBER; x++) ({
another huge array[x] = g(x)

}

Common code optimizations

* Loops: unrolling, combining/distribution,
change nesting

* Finding common subexpressions and replacing
with a reference to a temporary variable.
—(a+b)/4d+(a+b)/3

* Recursion: replace with iteration if possible.

— That's what tail-recursion optimization does!

* Why don't interpreters do these
optimizations?

* Usually, there's not enough time.

— We need the code to run NOW!

— Sometimes, can optimize a little (e.g., tail-
recursion).

Code generation

* Last phase of compilation.

 Choose what operations to use in the output
language and what order to put them in
(instruction selection, instruction scheduling).

* |f outputin a low-level language:

— Pick what variables are stored in which registers
(register allocation).

— Include debugging code? (store "true" function/
variable names and line numbers?)

Java

Uses both interpretation and compilation!

Step 1: Compile Java source to bytecode.

— Bytecode is "machine code" for a made-up
computer, the Java Virtual Machine (JVM).

Step 2: An interpreter interprets the
bytecode.

Historically, the bytecode interpreter made
Java code execute very slowly (1990s).

Just-in-time compilation

* Bytecode interpreters historically would
translate each bytecode command into
machine code and immediately execute it.

* Ajust-in-time compiler has two optimizations:
— Caches bytecode -> machine code translations so

it can re-use them later.

— Dynamically compiles sections of bytecode into
machine code "when it thinks it should."

JIT: a classic trade-off

e Startup is slightly slower
— Need time to do some initial dynamic compilation.

* Once the program starts, it runs faster than a
regular interpreter.

— Because some sections are now compiled.

