
CS	360	
Programming	Languages

Day	10	- Foldr



(define (length lst)

(if (null? lst) 0

(+ 1 (length (cdr lst)))))

(define (sum-list lst)

(if (null? lst) 0

(+ (car lst) (sum-list (cdr lst)))))

(define (map func lst)

(if (null? lst) '()

(cons (func (car lst)) (map func (cdr lst)))))

All	of	these	have:
• A	base	case	when	the	list	is	null	(orange)
• A	return	value	for	the	base	case	(green)
• A	recursive	case	where	we	combine	(red)	something	with	the	car	of	the	list	(purple)	

with	a	recursive	call	on	the	cdr (blue)



One	function	to	rule	them	all
(define (foldr func base lst)

(if (null? lst) base

(func (car lst) 

(foldr func base (cdr lst)))))

foldr



(foldr func base lst)

func

1 func

2 func

3 base

Say	lst = '(1 2 3)
• Foldr applies	func repeatedly	to	pairs	of	

items,	starting	from	the	right	end	of	the	
list.

• The	first	two	items	are	the	last	item	in	the	
list	and	the	base	element.

• The	function	must	be	a	function	of	two	
items.
(f 1 (f 2 (f 3 base)))

• In	general,	for	lst = (x1 x2 … xn)
• (f x1 (f x2 (f x3 (f … (f xn base)))…)



Examples
• (foldr + 0 lst)

• (foldr (lambda (item acc) (+ 1 acc)) 0 lst)



Examples	with	foldr
These	are	useful	and	do	not	use	“private	data”

These	are	useful	and	do	use	“private	data”

(define (f1 lst) (foldr + 0 lst))
(define (f2 lst) 
(foldr (lambda (x acc) (and (>= x 0) acc)) #t lst))

(define (f3 lo hi lst) 
(foldr

(lambda (x acc) 
(+ (if (and (>= x lo) (<= x hi)) 1 0) acc)) 0 lst))

(define (f4 g lst) 
(foldr (lambda (x acc) (and (g x) acc)) #t lst)) 



You	try:
• Write	reverse	using	foldr.

• Write	max	using	foldr.
• Try	to	make	it	so	the	"base"	argument	to	foldr is	not	a	
huge	negative	number.		(write	it	this	way	first	if	it's	
easier,	then	change	it)

• Write	map	using	foldr.

• Write	filter	using	foldr.


