
CS 360
Programming Languages

Day 2

Review

• A Racket program is a sequence of definitions and expressions.
• A definition binds a variable to a value.
• An expression is something that can be evaluated.
• An expression always evaluates to a value (definitions never do).

• An environment holds variables and their values (bindings).

Review

• We have seen a number of different kinds of expressions:
– Constants: 3, 1/4, 0.75, 2+3i, #f, #t

• Evaluate to themselves.

– Variables: x, y, +, *, <
• Evaluate by looking up value in current environment.

– if expressions: (if test e1 e2)

• What about (+ e1 e2) and (< e1 e2)?

New type of expression

• In Racket, all of the math operations are functions!

• Therefore, (+ e1 e2) and (< e1 e2) are governed by the same
evaluation rules: those for function calls.

• Syntax: (f e1 e2 ... en)

• Type-checking:
– f must have type function
– e1, e2, ..., en must be expressions.

• Evaluation: evaluate each argument expression to a value, then run
the function code.

Examples of function calls
• (+ 3 2) => 5
• (* 3 2) => 6
• (< 3 2) => #t
• (sqrt 4) => 2
• (expt 3 2) => 9

Function definitions
Functions: the most important building block in the whole course

– Like Python/C++ functions, have arguments and result
– But no classes, this, return, etc.

Example function definition/binding:
(define (add1 x)
(+ 1 x))

Another example:
(define (abs x)
(if (< x 0)
(- x)
x))

A recursive example

; Note: correct only if y >= 0

(define (pow x y)
(if (= y 0)

1
(* x (pow x (- y 1)))))

Note: The body includes a (recursive) function call: pow(x,y-1)

Example, extended

(define (pow x y)
(if (= y 0)

1
(* x (pow x (- y 1)))))

(define (cube x)
(pow x 3))

(define sixtyfour (cube 4))

(define fortytwo (+ (pow 2 4) (pow 4 2) (cube 2) 2)

Recursion
• If you’re not yet comfortable with recursion, you will be soon J

– Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler”
problems

• Recursion more powerful than loops
– Will not normally use loops in Racket (they exist, but are usually

poor style.)
– Loops often (not always) obscure simple, elegant solutions

Function bindings

• Syntax:
– (Will generalize in later lecture)
– f is the name of the function.
– x1 through xn are the arguments (possibly none).
– b is an expression that is the body of the function.

• Evaluation: The name of a function is a value! (it's a variable)
– Different than in many other programming languages.
– Adds f to environment so later expressions can call it.
– (Function-call semantics will also allow recursion.)

(define (f x1 x2 . . . xn) b)

Some gotchas
• Can’t add extra parentheses like in Python/C++.

– (+ 1 2) is fine… (+ (1 2)) is not fine,
and neither is ((+ 1 2)).

– Parentheses have a very particular meaning in Racket; they are not
just used for changing precedence or grouping.

• Using prefix notation for everything pretty much eliminates
having to use parentheses for precedence.

• No “return” statement.
– Functions only have a single expression as the body anyway.
– Evaluating that statement becomes the return value.

Pairs and lists
So far: numbers, booleans (#t and #f), conditionals, variables, functions

– Now ways to build up data with multiple parts
– This is essential
– C++ examples: classes with fields, arrays

Rest of lecture:
– Pairs and lists
– These are our basic data structures that we use to create all other

data structures.

Later: Other more general ways to create compound data

Cons cells
• Fundamental data structure for Racket (and pretty much every other

"parentheses-based" programing language [Scheme, LISP])

• Two-piece structure:

• Left side is called the "car"
• Right side called the "cdr" (pronounced could-er)

• Each piece holds a pointer to something else (the something can be
almost any data type)

Pairs

We need a way to build pairs and a way to access the pieces

Build:
• Syntax:
• Evaluation: Evaluate e1 to v1 and e2 to v2; result is

(v1 . v2)
– A pair of values is a value.

• Stored in a single cons cell.

(cons e1 e2)

Pairs

We need a way to build pairs and a way to access the pieces

Build:
• Alternate syntax:
• Evaluation: Evaluates to the pair (v1 . v2).

– This is how to make a “literal” pair, where v1 and v2 are not
evaluated.

– Similar to using double quotes to make a string literal in Python/C++.
– E.g.: (cons (+ 1 2) (+ 3 4)) makes the pair (3 . 7).
– E.g.: '(3 . 7) also makes the pair (3 . 7).
– E.g.: However, '((+ 1 2) . (+ 3 4)) makes the pair
((+ 1 2) . (+ 3 4))

'(v1 . v2)

Pairs

We need a way to build pairs and a way to access the pieces

Access:
• Syntax: and

• Evaluation: Evaluate e to a pair of values and return the first or
second piece.

(car e) (cdr e)

Examples
Functions can take and return pairs
(define (swap pair)

(cons (cdr pair) (car pair)))

(define (sum-two-pairs p1 p2)
(+ (car p1) (cdr p1) (car p2) (cdr p2)))

(define (div-mod n1 n2)
(cons (quotient n1 n2) (remainder n1 n2)))
; returning more than one value is a pain in C++

(define (sort-pair pair)
(if (< (car pair) (cdr pair))
pair
(swap pair)))

Lists
• Lists are built in Racket using linked lists of cons cells.

Need ways to build lists and access the pieces…

Building Lists
• The empty list is a value:

• In general, a list of values is a value; elements are separated by
spaces:

• If e1 evaluates to v1 and e2 evaluates to a list (v2 v3 … vn), then
(cons e1 e2) evaluates to (v v1 v2 v3 … vn)

'()

'(v1 v2 ...vn)

Accessing Lists

• (null? e) evaluates to #t if and only if e evaluates to '().

• If e evaluates to '(v1 v2 … vn) then (car e) evaluates to
v1
– throw exception if e evaluates to '()
– Think of car as "get the first element of the list."

• If e evaluates to (v1 v2 … vn) then (cdr e) evaluates to
(v2 … vn)
– throw exception if e evaluates to '()
– Think of cdr as "get everything but the first element of the

list."
– Notice result is a list

Example list functions

(define (sum-list lst)
(if (null? lst)

0
(+ (car lst) (sum-list (cdr lst)))))

(define (countdown num)
(if (= num 0)

'()
(cons num (countdown (- num 1)))))

Recursion again
Functions that process lists are usually recursive.

– Only way to “get to all the elements”

• What should the answer be for the empty list?
– Usually, this is your base case.

• What should the answer be for a non-empty list?
– Typically a combination of doing something with the car of the list

and a recursive call on the cdr of the list.

Similarly, functions that produce lists of potentially any size will be
recursive.

– You create a list out of smaller lists (with cons, list, or append).

Two other ways to build lists
• list function

– Makes a list out of all arguments.
– Arguments can be of any data type.
– (list e1 e2 … en) evaluates e1 through en to values v1

through vn; returns the list '(v1 v2 … vn).
• append function

– Concatenates values inside lists given as arguments.
– Arguments must be lists.
– (append e1 e2 … en) evaluates e1 through en to values v1

through vn;
– If v1 = (v11 v12 …) and v2 = (v21 v22 …) etc, then return

value is (v11 v12 … v21 v22 …).

Lists of lists
Processing lists of lists requires no new features. Examples:

(define (sum-pair-list lst)
(if (null? lst)
0
(+ (car (car lst)) (cdr (car lst)) (sum-pair-list (cdr

lst)))))

(define (firsts lst)
(if (null? lst)

'()
(cons (car (car lst)) (firsts (cdr lst)))))

(define (seconds lst)
(if (null? lst)

'()
(cons (cdr (car lst)) (seconds (cdr lst)))))

(define (sum-pair-list2 lst)
(+ (sum-list (firsts lst)) (sum-list (seconds lst))))

