CS 360
Programming Languages
Day 2




Review

« A Racket program is a sequence of definitions and expressions.
« A definition binds a variable to a value.

* An expression is something that can be evaluated.

* An expression always evaluates to a value (definitions never do).

* An environment holds variables and their values (bindings).



Review

 We have seen a number of different kinds of expressions:
— Constants: 3, 1/4, 0.75, 2431, #£, #t

e Evaluate to themselves.

— Variables: x, y, +, *, <
« Evaluate by looking up value in current environment.

— if expressions: (if test el e2)

« What about (+ el e2) and (< el e2)?



New type of expression

* In Racket, all of the math operations are functions!

 Therefore, (+ el e2) and (< el e2) are governed by the same
evaluation rules: those for function calls.

« Syntax: (f el e2 ... en)

* Type-checking:
— £ must have type function
- el, e2, ..., en must be expressions.

« Evaluation: evaluate each argument expression to a value, then run
the function code.



Examples of function calls

(+ 3 2) =5

(* 3 2) => 6

(< 3 2) => #t
(sgrt 4) => 2
(expt 3 2) => 9



Function definitions

Functions: the most important building block in the whole course
— Like Python/C++ functions, have arguments and result
— But no classes, this, return, etc.

Example function definition/binding:

(define (addl x)
(+ 1 x))

Another example:

(define (abs x)
(1f (< x 0)
(- x)
X))



A recursive example

; Note: correct only if y >= 0

(define (pow x y)
(if (=y 0)
1
(* x (pow x (- y 1)))))

Note: The body includes a (recursive) function call. pow (x,y-1)



Example, extended

(define (pow x y)
(if (=y 0)
1
(* x (pow x (- y 1)))))

(define (cube x)
(pow x 3))

(define sixtyfour (cube 4))

(define fortytwo (+ (pow 2 4)

(pow 4 2)

(cube 2) 2)



Recursion

 If you're not yet comfortable with recursion, you will be soon ©
— Will use for most functions taking or returning lists

« “Makes sense” because calls to same function solve “simpler”
problems

» Recursion more powerful than loops

— Will not normally use loops in Racket (they exist, but are usually
poor style.)

— Loops often (not always) obscure simple, elegant solutions



Function bindings

* Syntax: (define (f x1 x2 . . . xn) b)
— (Will generalize in later lecture)
— £ is the name of the function.
— x1 through xn are the arguments (possibly none).
— b is an expression that is the body of the function.

« Evaluation: The name of a function is a value! (it's a variable)

— Different than in many other programming languages.
— Adds £ to environment so /later expressions can call it.

— (Function-call semantics will also allow recursion.)



Some gotchas

« Can’t add extra parentheses like in Python/C++.

— (+ 1 2) isfine... (+ (1 2)) isnotfine,
and neitheris ((+ 1 2)).

— Parentheses have a very particular meaning in Racket; they are not
just used for changing precedence or grouping.

« Using prefix notation for everything pretty much eliminates
having to use parentheses for precedence.

* No “return” statement.
— Functions only have a single expression as the body anyway.
— Evaluating that statement becomes the return value.



Pairs and lists

So far: numbers, booleans (#t and #£), conditionals, variables, functions
— Now ways to build up data with multiple parts
— This is essential
— C++ examples: classes with fields, arrays

Rest of lecture:
— Pairs and lists

— These are our basic data structures that we use to create all other
data structures.

Later: Other more general ways to create compound data



Cons cells

« Fundamental data structure for Racket (and pretty much every other
"parentheses-based" programing language [Scheme, LISP])

 Two-piece structure:

« Left side is called the "car"
* Right side called the "cdr" (pronounced could-er)

« Each piece holds a pointer to something else (the something can be
almost any data type)



Pairs

We need a way to build pairs and a way to access the pieces

Build.
. Syntax: (cons el eZ2)

 Evaluation: Evaluate el tovl and e2 tov2:; resultis
(vl . v2)

— A pair of values is a value.

« Stored in a single cons cell.



Pairs

We need a way to build pairs and a way to access the pieces

Build-
« Alternate syntax: '(vl . v2)
« Evaluation: Evaluates to the pair (vl . v2).

— This is how to make a “literal” pair, where v1 and v2 are not
evaluated.

— Similar to using double quotes to make a string literal in Python/C++.
— E.g.. (cons (+ 1 2) (+ 3 4)) makesthepair (3 . 7).
— E.g.:"(3 . 7) alsomakesthepair (3 . 7).

— E.g..However, ' ((+ 1 2) . (+ 3 4)) makes the pair
((+ 1 2) . (+ 3 4))



Pairs

We need a way to build pairs and a way to access the pieces

Access:
« Syntax: (car e) and (cdr e)

« Evaluation: Evaluate e to a pair of values and return the first or
second piece.



Examples

Functions can take and return pairs

(define (swap pair)
(cons (cdr pair) (car pair)))

(define (sum-two-pairs pl p2)
(+ (car pl) (cdr pl) (car p2) (cdr p2)))

(define (div-mod nl n2)
(cons (quotient nl n2) (remainder nl n2)))
; returning more than one value is a pain in C++

(define (sort-pair pair)
(if (< (car pair) (cdr pair))
pair
(swap pair)))



Lists

« Lists are built in Racket using linked lists of cons cells.

Need ways to build lists and access the pieces...



Building Lists

« The empty list is a value: "()

« In general, a list of values is a value; elements are separated by

spaces: '(vl v2 ...vn)

 |fel evaluatesto vl and e2 evaluatesto alist (v2 v3 .. vn), then
(cons el e2) evaluatesto (v vl v2 v3 .. vn)



Accessing Lists

« (null? e) evaluatesto #t ifand onlyif e evaluatesto ' ().

* |fe evaluatesto'(vl v2 .. vn) then (car e) evaluates to
vl

— throw exception if e evaluates to ' ()
— Think of car as "get the first element of the list."

« |fe evaluatesto (vl v2 .. vn) then (edr e) evaluatesto
(v2 .. vn)

— throw exception if e evaluates to ' ()

— Think of edr as "get everything but the first element of the
list."

— Notice result is a list



Example list functions

(define (sum-list 1lst)
(i1f (null? 1st)
0
(+ (car 1lst) (sum-list (cdr 1lst)))))

(define (countdown num)
(1f (= num 0)
' ()

(cons num (countdown (- num 1)))))



Recursion again

Functions that process lists are usually recursive.
— Only way to “get to all the elements”

« What should the answer be for the empty list?
— Usually, this is your base case.

« What should the answer be for a non-empty list?

— Typically a combination of doing something with the car of the list
and a recursive call on the cdr of the list.

Similarly, functions that produce lists of potentially any size will be
recursive.

— You create a list out of smaller lists (with cons, 1ist, or append).



Two other ways to build lists

e 1list function
— Makes a list out of all arguments.
— Arguments can be of any data type.

— (1list el e2 .. en) evaluates el through en to values v1
through vn; returns the list ' (vl v2 .. vn).

e append function
— Concatenates values inside lists given as arguments.
— Arguments must be lists.

— (append el e2 .. en) evaluates el through en to values v1
through vn;

— Ifvl=(vll v12 .. ) andv2 = (v21l v22 .. ) etc, thenreturn
valueis (v11l v12 .. v21 v22 .. ).



Lists of lists

Processing lists of lists requires no new features. Examples:

(define (sum-pair-list 1lst)
(if (null? 1lst)
0
(+ (car (car 1lst)) (cdr (car 1lst)) (sum-pair-list (cdr

1st)))))

(define (firsts 1lst)
(1f (null? 1lst)
0
(cons (car (car 1lst)) (firsts (cdr 1lst)))))

(define (seconds 1lst)
(if (null? 1st)
"0
(cons (cdr (car 1lst)) (seconds (cdr 1lst)))))

(define (sum-pair-list2 1lst)
(+ (sum-list (firsts 1lst)) (sum-list (seconds 1lst))))



