
CS 360

Programming Languages

Day 5

Today

• Local bindings

– We will see these for variables and functions.

• Benefits of no mutation

– No need for you to keep track of sharing/aliasing, which C++ (and

sometimes Python) programmers must obsess about

– What makes global variables "bad" in most languages (languages

that allow mutation)

Let-expressions

The construct for introducing local bindings is just an expression, so we

can use it anywhere we can use an expression

• Syntax:

– Each vari is any variable name, each ei is any expression, and e
is also any expression.

• Evaluation: Evaluate each ei, assign each ei to vari (all at once) in an

environment that includes the bindings from the enclosing

environment.

• Result of whole let-expression is result of evaluating e in the new

environment.

• Key idea: a let-expression allows you to make local variables and

evaluate an expression with those variables. The variables disappear

outside of the let-expression.

(let ((var1 e1) (var2 e2) ...) e)

Syntax
(let ((a 1) (b 2))

(+ a b))

==> 3

"Shadows" bindings from defines outside the let:

(define a 10)
(define c 30)
(let ((a 1) (b 2))

(+ a b c))

==> 33

However, much more common to use let inside of a function definition...

Silly examples

(define (silly1 z)
(let ((x 5))

(+ x z)))

; this one won't work!
(define (silly2 z)

(let ((x 5) (answer (+ x z)))
answer))

(define (silly2-fixed z)
(let* ((x 5) (answer (+ x z)))

answer))

• Normal let creates and assigns all the local variables

"simultaneously," so they cannot reference each other.

• let* creates and assigns variables sequentially, so they can "see"

each other.

Silly examples

silly4 is poor style but shows let-expressions are expressions

– Could also use them in function-call arguments, parts of

conditionals, etc.

– Also notice shadowing

(define (silly3 z)
(let* ((x (if (> z 0) z 4)) (y (+ x 1)))

(if (> x y) (* 2 x) (* y y))))

(define (silly4)
(let ((x 1))

(+
(let ((x 2)) (+ x 1))
(let ((y (+ x 2))) (+ y 1)))))

What’s new

• What’s new is scope: contexts within a program where a variable has

a value.

– Variables bound using let can be used in the body of the let-

expression.

– Variables bound using let* can be used in the body of the let-

expression and in later bindings in the same let*.

– Bindings in let/let* shadow bindings of the same variable name

from the enclosing environment(s). [defines or other lets]

• Nothing else is new!

How do we do this with functions?

• Good style to define helper functions inside the functions they help if

they are:

– Unlikely to be useful elsewhere

– Likely to be misused if available elsewhere

– Likely to be changed or removed later

• A fundamental trade-off in code design: reusing code saves effort and

avoids bugs, but makes the reused code harder to change later

• But we need some additional syntax…

Local/nested functions

• let and let* don't let you define function bindings using the same

variations that define does:

– (define var expr) OK

– (define (func x1 x2…) body-expr) OK

– (let ((var expr) (var expr)…) expr) OK

– Can't do (let (((func x1 x2…) body-expr) …) expr) NO

– Note that define statements are not expressions, so they don't

evaluate to values.

– Can't do (let ((func (define … NO

Solution: internal defines

(define (f (x1 x2 ... xn)
(define (f1 (y1 y2 ... yn) f1-body-expr)
(define (f2 (z1 z2 ... zn) f2-body-expr)
f-body-expr)

• How does this not conflict with the idea of function bodies only

having one expression?

• An additional define is not an expression.

– Expressions can be evaluated to values.

– Defines are not expressions, and have no values.

Without looking at the handout…

• Let's create a function that produces a list of increasing

numbers:

• Ex: (count-up 1 5) produces the list '(1 2 3 4 5)

• (define (count-up from to)
… what goes here? …

• Base case? Recursive case?

(Inferior) Example

• This shows how to use a local function binding, but:

– Will show a better version next

– count-up might be useful elsewhere

(define (count-up-from-one x)
(define (count-up from to)

(if (= from to)
(cons from '())
(cons from (count-up (+ 1 from) to))))

(count-up 1 x))

Nested functions, better

• Functions can use any binding in the environment where they

are defined:

– Bindings from “outer” environments

• Such as parameters to the outer function

– Earlier bindings in let* (but not let)

• Usually bad style to have unnecessary parameters

– Like "to" in the previous example

(define (count-up-from-one-better x)
(define (count-up from)

(if (= from x)
(cons from '())
(cons from (count-up (+ 1 from)))))

(count-up 1))

Avoid repeated recursion

Consider this code and the recursive calls it makes

– Don’t worry about calls to null?, car, and cdr because

they do a small constant amount of work

(define (bad-max lst)
(cond

((null? (cdr lst))
(car lst))

((> (car lst) (bad-max (cdr lst)))
(car lst))

(#t
(bad-max (cdr lst)))))

(define x (bad-max '(50 49 48 … 1)))
(define y (bad-max '(1 2 3 … 50)))

Fast vs. unusable

(bm '(50…)

((> (car lst) (bad-max (cdr lst)))
(car lst))

(#t (bad-max (cdr lst)))))

(bm '(49…) (bm '(48…) (bm '(1))

(bm '(1…) (bm '(2…) (bm '(3…) (bm '(50))

…

(bm '(50))

250
times(bm '(2…)

(bm '(3…)

(bm '(3…)

(bm '(3…)

Math never lies

Suppose the cond, car, cdr, and null? parts of bad-max take 10-7

seconds total.

– Then (bad-max '(50 49 … 1)) takes 50 x 10-7 seconds

– And (bad_max '(1 2 … 50)) takes 2.25 x 108 seconds

• (over 7 years)

• (bad-max '(55 54 … 1)) takes over 2 centuries

• Buying a faster computer won’t help much J

The key is not to do repeated work that might do repeated work that might

do…

– Saving recursive results in local bindings is essential…

Efficient max

(define (good-max lst)
(cond
((null? (cdr lst))
(car lst))

(#t
(let ((max-of-cdr (good-max (cdr lst))))
(if (> (car lst) max-of-cdr)
(car lst)
max-of-cdr)))))

Fast vs. fast

(gm '(50…)

(let ((max-of-cdr (good-max (cdr lst))))
(if (> (car lst) max-of-cdr)
(car lst)
max-of-cdr))

(gm '(49…) (gm '(48…) (gm '(1))

(gm '(1…) (gm '(2…) (gm '(3…) (gm '(50))

A valuable non-feature: no mutation

You now have all the features you need for project 1.

Now learn a very important non-feature

– Huh?? How could the lack of a feature be important?

– When it lets you know things other code will not do with your code

and the results your code produces

A major aspect and contribution of functional programming:

Not being able to assign to (a.k.a. mutate) variables or parts of tuples and

lists

Suppose we had mutation…

• What is z?

– Would depend on how we implemented sort-pair
• Would have to decide carefully and document sort-pair

– But without mutation, we can implement “either way”

• No code can ever distinguish aliasing vs. identical copies

• No need to think about aliasing; focus on other things

• Can use aliasing, which saves space, without danger

; Recall that sort-pair takes a pair and returns
; an equivalent pair so that car > cdr.

(define x '(4 . 3))
(define y (sort-pair x))
; Somehow mutate (car x) to hold 5
(define z (car y))

Interface vs. implementation

In Racket, these two implementations of sort-pair are indistinguishable

– But only because tuples are immutable

– The first is better style: simpler and avoids making a new pair in the

then-branch

(define (sort-pair pair)
(if (> (car pair) (cdr pair))

pair
(cons (cdr pair) (car pair))))

(define (sort-pair pair)
(if (> (car pair) (cdr pair))

(cons (car pair) (cdr pair))
(cons (cdr pair) (car pair))))

An even clearer example

(define (my-append lst1 lst2)
(if (null? lst1)

lst2
(cons (car lst1) (my-append (cdr lst1) lst2))))

(define x '(2 4))
(define y '(5 3 0))
(define z (my-append x y))

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or

(can’t tell,

but it’s the

first one)

Racket vs. Python/C++ on mutable data

• In Racket, we create aliases all the time without thinking about it

because it is impossible to tell where there is aliasing.

– Example: cdr is constant time; does not copy rest of the list.

– So don’t worry and focus on your algorithm.

• In Python and C++, we have to think about the implications of

mutability, which often forces us to copy manually.

– Hence why we have pass by reference and pass by value

– And then you have pass by const reference to simulate pass by

value but not waste time copying…

• e.g., compare(const string& s1, const string& s2)

