CS 360
Programming Languages
Event-Driven Programming

F scala ej

Swift

& Dart

JavaScript



Events and Timers and Listeners, Oh My!




Control flow

e '"Traditional" program: one statement at a time, line by line.

e Threaded program: CPU determines execution order.
— Controlled with synchronized, wait()/notifyAll().

e Event-driven program: controlled by the order that "events" happen.



e Event-driven programming is often seen in threaded programs, as another
model of communication between threads.

Thread 1

Event happened! -4 Thread 2

Handle this event

Another event

Thread 3
happened! =

Handle this event




An event is something that happens in your program that another piece of
code wants to be aware of.

— Simple things: mouse clicks, key presses, ...

— Complex things: file is done loading, calculation is finished, received
request from a client.

Event-driven programming is no better or worse than other models of
thread communication, it's just different.

— Often forced to use it because so many graphical user interface (GUI)
libraries use it.



Here's the way Java does it:

e Java has certain classes that generate events (sources).

— Usually classes that correspond to visual elements on the screen:
buttons, menus, etc.

e Programmers write other classes that are called event listeners.

— These classes have certain methods that will be automatically called in
response to events.

e Programmers link up an event generator (a source) with an event listener.

— Extra information is sent from the source to the listener through event
objects.



e Sources, event objects, and listeners.

event
object

(Event) Listeners are
objects that have
registered to
receive certain
types of events
from event sources.

Event
listener

Event
listener

Event
listener

event m

object

Event objects are
objects that are sent to
the listeners that
contain information
about the event that
occurred (e.qg., where
the mouse was clicked).




Let's look at an example...

e Look at the EventExample. java code.



JButton: a class that models a button.
— Also an event source.

HelloWorldListener: a class designed to listen for button presses.

— The code that runs when the action happens (inside actionPerformed)
is called an event handler.

ActionEvent (arg type to actionPerformed) is the event class.
— Whenever the JButton is pushed, it triggers (fires) an ActionEvent.

— Has methods for determining which object caused the event, when it
happened, etc.

Connected through addActionListener function.



Purpose of events: separate the code that causes the event from the code
that handles the event.

Lets one event source trigger multiple actions
— JButton can have multiple listeners added.

Lets one listener listen to multiple event sources.

— Could have HelloWorldListener connected to many buttons, key
presses, drop-down menus, etc.



e Java has (many) classes for Events:
- ActionEvent, MouseEvent, KeyEvent, ...

e and classes for Listeners:
- ActionListener, Mouselistener, KeyListener, ..

e We're going to examine just buttons and the mouse today.






e From class website, get ClickRectangleStart.java.
— Paste into new NetBeans project.

e GameFrame: represents the window that holds the game.

— Contains a "panel" to hold the moving rectangles, and a JButton to start the
game.

e GamePanel: represents the moving rectangles area.
— moveShapesToleft: moves all rectangles to the right.
— handleMouseClick: event handler for when the panel is clicked.
— paintComponent: draws the rectangles on the screen.



Run It



Task 1: Start Button

e |n StartButtonActionlListener
— Write actionPerformed.
— This method should call gameArea.moveShapesTolLeft().
— Then call repaint() [tells Java to redraw the rectangles]

e Uncomment lines in the GameFrame constructor to attach the listener to the
button.

e When done, you should be able to click the button and the shapes should
move to the left one pixel per click.



Task 2: Mouse clicks

e In GameMouseClickListener:
— Write mouseReleased.
— This should call handleMouseClick.
e arguments should be event.getX() and event.getY()
— Call repaint() [asks Java to redraw the rectangles]

* |nthe GameFrame constructor, uncomment lines to attach the listener to
the mouse.



Task 3: Automatic scrolling

e We don't want to click the start button to advance the rectangles.

e We need a way to automatically fire events in rapid succession.

— In order to repeatedly call moveShapes every few milliseconds to give the
illusion of scrolling.



Solution: Timer

e Timer objects will fire an ActionEvent repeatedly every x milliseconds.
e Timert=new Timer(x, <action listener>);
t.start();

e [See TimerExample.java]



e |n MoveShapesActionListener:
— Write actionPerformed to do two things:
e call moveShapesTolLeft on gameArea
e call repaint() [request that Java redraw the rectangles]

e Rewrite start button listener:
— actionPerformed should do three things:
e Create a new MoveShapesActionListener

e Create a timer: args are 10 (milliseconds), and your move shapes
action listener.

e Start the timer.



