
CS	360	
Programming	Languages

Interpreters



Implementing	PLs
Most	of	the	course	is	learning	fundamental	concepts	for	
using and	understanding PLs.

– Syntax	vs.	semantics	vs.	idioms.
– Powerful	constructs	like	closures,	first-class	objects,	
iterators	(streams),	multithreading,	…

An	educated	computer	scientist	should	also	know	some	
things	about	implementing PLs.

– Implementing	something	requires	fully	understanding	its	
semantics.

– Things	like	closures	and	objects	are	not	“magic.”
– Many	programming	tasks	are	like	implementing	small	PLs.

• Example:	"connect-the-dots	programming	language"	from	141.



Ways	to	implement	a	language
Two	fundamental	ways	to	implement	a	programming	
language	X.

• Write	an	interpreter in	another	language	Y.
– Better	names:	evaluator,	executor.
– Immediately	executes	the	input	program	as	it's	read.

• Write	a	compiler in	another	language	Y that	compiles	
to	a	third	language	Z.
– Better	name:	translator
– Takes	a	program	in	X and	produce	an	equivalent	program	
in	Z.



First	programming	language?



First	programming	language?



Interpreters	vs compilers

• Interpreters
– Takes	one	"statement"	of	code	at	a	time	and	executes	
it	in	the	language	of	the	interpreter.

– Like	having	a	human	interpreter	with	you	in	a	foreign	
country.

• Compilers
– Translate	code	in	language	X	into	code	in	language	Z	
and	save	it	for	later.		(Typically	to	a	file	on	disk.)

– Like	having	a	person	translate	a	document	into	a	
foreign	language	for	you.



Reality	is	more	complicated

Evaluation	(interpreter)	and	translation	(compiler)	
are	your	options.

– But	in	modern	practice	we	can	have	multiple	layers	of	
both.

A	example	with	Java:
– Java	was	designed	to	be	platform	independent.

• Any	program	written	in	Java	should	be	able	to	run	on	any	
computer.

– Achieved	with	the	"Java	Virtual	Machine."
• An	idealized	computer	for	which	people	have	written	
interpreters	that	run	on	"real"	computers.



Example:	Java

• Java	programs	are	compiled	to	an	"intermediate	
representation"	called	bytecode.
– Think	of	bytecode as	an	instruction	set	for	the	JVM.

• Bytecode is	then	interpreted	by	a	(software)	
interpreter	in	machine-code.

• Complication:	Bytecode	interpreter	can	compile	
frequently-used	functions	to	machine	code	if	it	
desires (just-in-time	compilation).

• CPU	itself	is	an	interpreter	for	machine	code.



Sermon
Interpreter	vs	compiler	vs	combinations	is	about	a	particular	
language	implementation,	not	the	language	definition.

So	there	is	no	such	thing	as	a	“compiled	language”	or	an	
“interpreted	language.”

– Programs	cannot	“see”	how	the	implementation	works.

Unfortunately,	you	hear	these	phrases	all	the	time:
– “C	is	faster	because	it’s	compiled	and	LISP	is	interpreted.”
– I	can	write	a	C	interpreter	or	a	LISP	compiler,	regardless	of	what	
most	implementations	happen	to	do.



One	complication
In	a	traditional	implementation	via	compiler,	you	do	not	
need	the	language	implementation	(the	compiler)	to	run	
the	program.

– Only	to	compile	it.
– To	let	other	people	run	your	program,	you	give	them	the	
compiled	binary	code.

But	Racket,	Scheme,	LISP,	Javascript,	Ruby,	…	have	eval
– Allows	a	program,	while	it	is	running,	to	create	a	string	(or	
in	Racket,	a	list)	with	arbitrary	code	and	execute	it.	

– Since	we	don’t	know	ahead	of	time	what	the	code	will	be,	
we	need	a	language	implementation	at	run-time	to	
support	eval

– Usually	you	see	this	in	languages	that	are	traditionally	
interpreted,	because	then	implementing	eval is	easy:	the	
interpreter	is	already	available.



eval /	apply
• These	functions	are	built	into	Racket,	and	
are	a	traditional	part	of	LISP/Scheme	
implementations.

• eval:	takes	a	list	argument	and	treats	it	
like	program	code,	executing	it	and	
returning	the	result.

• apply:	takes	a	function	and	a	list,	and	calls	
the	function	on	the	arguments	in	the	list.



quote
• Also	built-in,	but	we	don't	notice	it	because	
it's	called	automatically	whenever	we	use	a	
single	quote.

• (quote …) or	'(…) is	a	special	form	that	
makes	“everything	underneath”	into	plain	
symbols	and	lists,	instead	of	interpreting	
them	as	variables	or	function	calls.

• eval and	quote are	inverses:
– quote stops	evaluation	of	something.
– eval forces	evaluation	of	something.



Back	to	implementing	a	language
"(cons 1 '(2 3))"

Parsing
Call

Function Integer

Constant

1

cons

Static	checking
(what	is	checked
depends	on	PL)

Possible	
Errors	/
warnings

Rest	of	
implementation

Possible	
Errors	/
warnings

List

Constant Constant

2 3



Skipping	those	steps
LISP/Scheme-like	languages	have	an	interesting	property:

– The	format	in	which	we	write	a	the	program	code	(a	list)	is	
identical	to	the	main	data	structure	the	language	itself	
uses	to	represent	data	(a	list).

– Because	these	lists	are	always	fully	parenthesized,	we	get	
parsing	essentially	for	free!

– Not	so	in	Python,	C++,	Java,	etc.

We	can	also,	for	simplicity,	skip	static	checking.
– Assume	subexpressions	have	correct	types.

• We	will	not	worry	about	(add #f "hi").
– Interpreter	will	just	crash.



Write	(Mini-)Racket	in	Racket



Mini-Racket

• Only	one	data	type:	numbers.
– No	booleans,	lists,	etc.

• Mini-Racket	will	use	names for	all	functions	
rather	than	symbols.
– add,	sub,	mul,	etc.

• Simplified	mechanisms	for	conditionals,	
function	definitions,	and	function	calls.



Heart	of	the	interpreter

• mini-eval:	Evaluates	an	expression	and	returns	a	
value	(will	call	mini-apply to	handle	functions)	

• mini-apply:	Takes	a	function	and	argument	values	
and	evaluate	its	body	(calls	mini-eval).



(define (mini-eval expr env)
is this a ______ expression?
if so, then call our special handler 

for that type of expression.
)
What kind of expressions will we have?
• numbers
• variables (symbols)
• math function calls
• others as we need them



• How	do	we	evaluate	a	(literal)	number?
– That	is,	when	the	interpreter	sees	a	number,	what	
value	should	it	return?

• Just	return	it!

• Psuedocode for	first	line	of	mini-eval:
– If	this	expression	is	a	number,	then	return	it.



• How	do	we	handle	(add 3 4)?

• Need	two	functions:
– One	to	detect	that	an	expression	is	an	addition	
expression.

– One	to	evaluate	the	expression.



(add 3 4)

• Is	this	an	expression	an	addition	expression?
(equal? 'add (car expr))

• Evaluate	an	addition	expression:
(+ (cadr expr) (caddr expr))



You	try	(lab,	part	1)

• Add	subtraction	(e.g.,	sub)
• Add	multiplication	(mul)
• Add	division	(div)
• Add	exponentiation	(exp)
• Optional:	

– Add	other	primitives,	like	sqrt,	abs,	etc.		
– Make	sub	work	with	single	arguments	(returns	the	
negation).



(add	3	(add	4	5))

• Why	doesn't	this	work?



(add	3	(add	4	5))

• How	should our	language	evaluate	this	sort	of	
expression?

• We	could	forbid	this	kind	of	expression.
– Insist	things	to	be	added	always	be	numbers.

• Or,	we	could	allow	the	things	to	be	added	to	
be	expressions	themselves.
– Need	a	recursive	call	to	mini-eval inside	
eval-add.



You	try	(lab,	part	2)

• Fix	your	math	commands	so	that	they	will	
recursively	evaluate	their	arguments.



Adding	Variables



Implementing	variables

• Represent	a	frame as	a	hash	table.
• Racket's	hash	tables:
(define ht (make-hash))
(hash-set! ht key value)
(hash-has-key? ht key)
(hash-ref ht key)



Implementing	variables

• Represent	an	environment	as	a	list	of	frames.

global
x    2
y    3

f .

x    7
y    1 

hash	table
x: 7
y: 1

hash	table
x: 2
y: 3



Implementing	variables

• Two	things	we	can	do	with	a	variable	in	our	
programming	language:
– Define	a	variable	
– Get	the	value	of	a	variable

• Pretty	much	the	same	two	things	we	can	do	
with	a	variable	in	regular	Racket	(except	for	
set!)



Getting	the	value	of	a	variable

• New	type	of	expression:	a	symbol.
• Whenever	mini-eval sees	a	symbol,	it	
should	look	up	the	value	of	the	variable	
corresponding	to	that	symbol.



Getting	the	value	of	a	variable
Follow	the	rules	of	lexical	scoping:	

(define (lookup-variable-value var env)
; Pseudocode:
; If our current frame has a value for the
;   variable, then get its value and return it.
; Otherwise, if our current frame has a frame
;   pointer, then follow it and try the lookup
;   there.
; Otherwise, (if we are out of frames), throw an
;   error.



Getting	the	value	of	a	variable
Follow	the	rules	of	lexical	scoping:	

(define (lookup-variable-value var env)
(cond ((hash-has-key? (car env) var) 

(hash-ref (car env) var))
((not (null? env)) 

(lookup-variable-value var (cdr env)))
((null? env) 

(error "unbound variable" var))))



Defining	a	variable	(lab,	part	3)

• mini-eval needs	to	handle	expressions	that	
look	like	(define variable expr)
– expr can	contain	sub-expressions.

• Add	two	functions	to	the	evaluator:
– definition?:	tests	if	an	expression	fits	the	form	
of	a	definition.

– eval-definition:	extract	the	variable,	
recursively	evaluate	the	expression	that	holds	the	
value,	and	add	a	binding	to	the	current	frame.



Implementing	conditionals

• We	will	have	one	conditional	in	Mini-Racket:	
ifzero

• Syntax:	(ifzero expr1 expr2 expr3)
• Semantics:	

– Evaluate	expr1,	test	if	it's	equal	to	zero.
– If	yes,	evaluate	and	return	expr2.
– If	no,	evaluate	and	return	expr3.



Implementing	conditionals	(lab,	part	4)

• Add	functions	ifzero? and	eval-ifzero.

• If	time,	try	challenges	on	the	back	of	the	lab.



• Designing	our	interpreter	around	mini-
eval.

• (define (mini-eval expr env) …
• Determines	what	type	of	expression	expr is
• Dispatch	the	evaluation	of	the	expression	to	
the	appropriate	function
– number? ->	evaluate	in	place
– symbol? ->	lookup-variable-value
– add?/subtract?/multiply? ->	appropriate	
math	func

– definition? ->	eval-define
– ifzero? ->	eval-ifzero



Today

• Two	more	pieces	to	add:
– Closures	(lambda? /	eval-lambda)
– Function	calls	(call? /	eval-call)



Mini-Racket	will	have	some	simplifications	from	
normal	Racket.

• All	functions	will	have	exactly	one	argument.
• Removes	the	need	for	lambda	expressions	to	
have	parentheses.

• Normal	Racket:		(lambda (x) (+ x 1))

• Mini-Racket:							(lambda x (add x 1))



Mini-Racket	will	have	some	simplifications	from	
normal	Racket.

• Normal	Racket	has	two	versions	of	define,	one	
for	variables	and	one	for	functions:
(define x 3)
(define (add1 x) (+ x 1)).

• The	2nd version	is	just	a	shortcut	for
(define add1 (lambda (x) (+ x 1))



Mini-Racket	will	have	some	simplifications	from	
normal	Racket.

• Mini-Racket	will	not	have	the	"shortcut"	
define;	we	must	use	an	explicit	lambda.

• Normal	Racket:		
(define (add1 x) (+ x 1)) 
(define add1 (lambda (x) (+ x 1)))

• Mini-Racket:
(define add1 (lambda x (add x 1))



Mini-Racket	will	have	some	simplifications	from	
normal	Racket.

• Normal	Racket	recognizes	a	function	call	as	
any	list	that	starts	with	a	function	name	(or	
anything	that	evaluates	to	a	closure).

• Mini-Racket	will	recognize	function	calls	as	
lists	that	starts	with	the	symbol	call.
– This	makes	the	Mini-Racket	syntax	more	
complicated,	but	simplifies	the	interpreter	code.



Mini-Racket	will	have	some	simplifications	from	
normal	Racket.

• Normal	Racket:		(add1 5)

• Mini-Racket:							(call add1 5)



Implementing	closures

• In	Mini-Racket,	all	(user-defined)	functions	
and	closures	will	have	a	single	argument.

• Syntax:	(lambda var expr)
– Note	the	different	syntax	from	"real"	Racket.

• Semantics:	Creates	a	new	closure	(anonymous	
function)	of	the	single	argument	var,	whose	
body	is	expr.



(lambda var expr)

• Need	a	new	data	structure	to	represent	a	
closure.

• Why	can't	we	just	represent	them	as	the	list	
(lambda	var closure)	above?		
– Hint:	What	is	missing?		Think	of	environment	
diagrams.



(lambda var expr)

• We	will	represent	closures	internally	in	Mini-
Racket	using	a	list	of	four	components:
– The	symbol	'closure
– The	argument	variable	(var)
– The	body	(expr)
– The	environment	in	which	this	closure	was	
defined.



Evaluate	at	top	level:	(lambda x (add x 1))

Our	evaluator	should	return
'(closure x (add x 1) (#hash(…)))

Arg:	x
Code:	(add	x	1)

global



Write	lambda? and	eval-lambda

• lambda? is	easy.
• eval-lambda should:

– Extract	the	variable	name	and	the	body,	but	don’t	
evaluate	the	body (not	until	we	call	the	function)

– Return	a	list	of	the	symbol	'closure,	the	
variable,	the	body,	and	the	current	environment.



(define (eval-lambda expr env) 
(list 'closure 

(cadr expr) ; the variable
(caddr expr) ; the body
env))



Function	calls

• First	we	need	the	other	half	of	the	
eval/apply paradigm.



• Remember	from	environment	diagrams:

• To	evaluate	a	function	call,	make	a	new	frame	
with	the	function's	arguments	bound	to	their	
values,	then	run	the	body	of	the	function	
using	the	new	environment	for	variable	
lookups.



Mini-Apply

(define (mini-apply closure argval)

Pseudocode:
• Make	a	new	frame	mapping	the	closure's	argument	(i.e.,	

the	variable	name)	to	argval.
• Make	a	new	environment	consisting	of	the	new	frame	

pointing	to	the	closure's	environment.
• Evaluate	the	closure's	body	in	the	new	environment	(and	

return	the	result).



Mini-Apply

(define (mini-apply closure argval)
(let ((new-frame (make-hash)))
(hash-set! new-frame <arg-name> argval)
(let ((new-env

<construct new environment>))
<eval body of closure in new-env>

)))



Mini-Apply

(define (mini-apply closure argval)
(let ((new-frame (make-hash)))
(hash-set! new-frame (cadr closure) argval)
(let ((new-env

(cons new-frame (cadddr closure))))
(mini-eval (caddr closure) new-env))))



Function	calls

• Syntax:	(call expr1 expr2)
• Semantics:

– Evaluate	expr1 (must	evaluate	to	a	closure)
– Evaluate	expr2 to	a	value	(the	argument	value)
– Apply	closure	to	value	(and	return	result)



You	try	it

• Write	call? (easy)
• Write	eval-call (a	little	harder)

– Evaluate	expr1 (must	evaluate	to	a	closure)
– Evaluate	expr2 to	a	value	(the	argument	value)
– Apply	closure	to	value	(and	return	result)

• When	done,	you	now	have	a	Turing-complete	
language!



; expr looks like
; (call expr1 expr2)
(define (eval-call expr env)

(mini-apply 
<eval the function>
<eval the argument>)



; expr looks like
; (call expr1 expr2)
(define (eval-call expr env)

(mini-apply 
(mini-eval (cadr expr) env)
(mini-eval (caddr expr) env)))



Magic	in	higher-order	functions
The	“magic”:	How	is	the	“right	environment”	
around	for	lexical	scope	when	functions	may	
return	other	functions,	store	them	in	data	
structures,	etc.?

Lack	of	magic:	The	interpreter	uses	a	closure	
data	structure	to	keep	the	environment	it	will	
need	to	use	later



Is	this	expensive?

• Time to	build	a	closure	is	tiny:	make	a	list	with	
four	items.

• Space to	store	closures	might be	large	if	
environment	is	large.



Interpreter	steps

• Parser
– Takes	code	and	produces	an	intermediate	
representation	(IR),	e.g.,	abstract	syntax	tree.

• Static	checking
– Typically	includes	syntactical	analysis	and	type	
checking.

• Interpreter	directly	runs	code	in	the	IR.



Compiler	steps

• Parser
• Static	checking
• Code	optimizer

– Take	AST	and	alter	it	to	make	the	code	execute	
faster.

• Code	generator
– Produce	code	in	output	language	(and	save	it,	as	
opposed	to	running	it).



Code	optimization

// Test if n is prime
boolean isPrime(int n) {
for (int x = 2; x < sqrt(n); x++) {
if (n % x == 0) return false;

}
return true;
}



Code	optimization

// Test if n is prime
boolean isPrime(int n) {
double temp = sqrt(n);
for (int x = 2; x < temp; x++) {
if (n % x == 0) return false;

}
return true;
}



Common	code	optimizations

• Replacing	constant	expressions	with	their	
evaluations.

• Ex:	Game	that	displays	an	8	by	8	grid.		Each	cell	
will	be	50	pixels	by	50	pixels	on	the	screen.
– int CELL_WIDTH = 50;
– int BOARD_WIDTH = 8 * CELL_WIDTH;



Common	code	optimizations

• Replacing	constant	expressions	with	their	
evaluations.

• Ex:	Game	that	displays	an	8	by	8	grid.		Each	cell	
will	be	50	pixels	by	50	pixels	on	the	screen.
– int CELL_WIDTH = 50;
– int BOARD_WIDTH = 400;

• References	to	these	variables	would	probably	
replaced	with	constants	as	well.



Common	code	optimizations

• Reordering	code	to	improve	cache	performance.
for (int x = 0; x < HUGE_NUMBER; x++) {
huge_array[x] = f(x)
another_huge_array[x] = g(x)

}



Common	code	optimizations

• Reordering	code	to	improve	cache	performance.
for (int x = 0; x < HUGE_NUMBER; x++) {
huge_array[x] = f(x)

}
for (int x = 0; x < HUGE_NUMBER; x++) {
another_huge_array[x] = g(x)

}



Common	code	optimizations

• Loops:	unrolling,	combining/distribution,	
change	nesting

• Finding	common	subexpressions and	replacing	
with	a	reference	to	a	temporary	variable.
– (a + b)/4 + (a + b)/3

• Recursion:	replace	with	iteration	if	possible.
– That's	what	tail-recursion	optimization	does!



• Why	don't	interpreters	do	these	
optimizations?

• Usually,	there's	not	enough	time.
– We	need	the	code	to	run	NOW!
– Sometimes,	can	optimize	a	little	(e.g.,	tail-
recursion).



Code	generation

• Last	phase	of	compilation.
• Choose	what	operations	to	use	in	the	output	
language	and	what	order	to	put	them	in	
(instruction	selection,	instruction	scheduling).

• If	output	in	a	low-level	language:
– Pick	what	variables	are	stored	in	which	registers	
(register	allocation).

– Include	debugging	code?		(store	"true"	
function/variable	names	and	line	numbers?)



Java

• Uses	both	interpretation	and	compilation!
• Step	1:	Compile	Java	source	to	bytecode.

– Bytecode is	"machine	code"	for	a	made-up	
computer,	the	Java	Virtual	Machine	(JVM).

• Step	2:	An	interpreter	interprets	the	bytecode.

• Historically,	the	bytecode interpreter	made	
Java	code	execute	very	slowly	(1990s).



Just-in-time	compilation

• Bytecode interpreters	historically	would	
translate	each	bytecode command	into	
machine	code	and	immediately	execute	it.

• A	just-in-time	compiler	has	two	optimizations:
– Caches	bytecode ->	machine	code	translations	so	
it	can	re-use	them	later.

– Dynamically	compiles	sections	of	bytecode into	
machine	code	"when	it	thinks	it	should."



JIT:	a	classic	trade-off

• Startup	is	slightly	slower
– Need	time	to	do	some	initial	dynamic	compilation.

• Once	the	program	starts,	it	runs	faster	than	a	
regular	interpreter.
– Because	some	sections	are	now	compiled.


