
CS	360	
Programming	Languages
Introduction	to	Java

The	plan

• Racket	will	return!
– Final	project	will	be	writing	a	Racket	interpreter	in	Java.

• Lecture	will	not	discuss	every	single	feature	of	Java.
– You	may	need	to	do	some	digging	on	your	own.
– Lots	of	help	online	(Google	is	your	friend).

Java	Resources

• Java	tutorial
– http://docs.oracle.com/javase/tutorial/java

• Java	documentation
– http://docs.oracle.com/javase/8/docs/api

• And	if	you're	confused	about	anything,	Google	will	find	it.
– There's	so	much	Java	stuff	on	the	web	because	most	undergraduate	

curriculums	now	teach	Java	as	their	first	or	second	language.

Logistics

• We	will	use	Java	version	8.

– Though	probably	most	of	the	code	I	will	show	is	compatible	back	to	Java	
6	and	7.

– Java	9	was	just	released	about	six	weeks	ago.

• Many	powerful	IDEs	out	there.

– I	will	be	using	an	IDE	called	NetBeans,	which	is	free.

– Installation	instructions	will	be	on	the	class	webpage.

Next	Assignments

• Overlapping	time	frames	for	the	last	assignments.
• Project	4	– out	today,	still	in	Racket	

– Out	today
– Due	Tue	Nov	14

• Project	5	– Java	warmup	assignment	
– Out	Thu	Nov	9
– Due	Tue	Nov	21	[day	before	Thanksgiving	break].

• Project	6	– Java	project involving	threads	and	concurrency
– Out	Tue	Nov	14
– Due	Tue	Nov	28

• Project	7	– Racket	interpreter	in	Java.
– Out	Tue	Nov	28
– Due	during	final	exams	(probably	Tue	Dec	12).

History	of	Java

History	of	Java

• Java	was	first	used	in	the	15th century,	in	Yemen,	and	quickly	spread	to	Egypt	
and	North	Africa.

The	Real	History	of	Java

The	Real	History	of	Java

• Java	is	millions	of	years	old	and	135	million	people	see	Java	every	day.

The	Real,	Real	History	of	Java

• The	Java	project	was	initiated	at	Sun	Microsystems	in	1991.
– Supposedly	named	after	the	large	quantities	of	coffee	the	language	

designers	drank.

• Originally	was	designed	to	be	embedded	in	consumer	electronic	devices,	like	
cable	TV	set-top	boxes,	but	it	was	too	advanced	for	the	cable	television	
industry	at	the	time.

• Language	evolved	into	a	general-purpose	programming	language.

The	Real,	Real	History	of	Java

• Java	was	designed	to	use	a	syntax	similar	to	C	and	C++.
– Lots	will	be	familiar.

• Java	is	(almost	completely)	object	oriented.
– All	data	types	are	classes,	except	for	the	primitives	like	int,	long,	float,	

double,	char,	boolean.
– All	code	is	written	inside	some	class.

• All	functions	are	methods	(no	free-floating	functions).
– Single	inheritance	only	(C++	allows	multiple).

• Statically	typed	(like	C++,).

• Has	generics (similar	to	C++	templates).

The	Real,	Real	History	of	Java

• Same	basic	programming	properties	as	C++.
– Must	declare	variables	before	use,	say	what	type	they	are.
– If/else,	for,	while,	do-while,	switch	work	just	like	C++.

• No	pointers!
– Java	uses	a	similar	idea	called	references,	which	are	"safer"	than	

pointers.

• All	objects	stored	on	the	heap	(using	"new").

• Garbage	collection
– No	explicit	allocation/deallocation	of	memory.		(no	malloc/free)

Defining	a	class

• Take	a	look	at	the	Rational	class.

• Create	primitive	variables	just	like	in	C++:
– int x	=	4;
– float	f	=	3.02;
– boolean b	=	true;		//	note	lowercase

• Strings	are	objects,	but	Java	lets	you	create	them	like	a	primitive:
– String	s	=	"a	wonderful	string";

• All	other	objects	are	created	using	new:
– ClassName var =	new	ClassName(args);
– Constructor	automatically	chosen	based	on	data	types	of	arguments.

• Variables	declared	in	a	class	are	called	fields or instance	variables.		(like	C++)

• Instances	of	a	class	have	one	copy	of	their	fields	or	instance	variables.

• Contrast	with	class	variables	or static	variables:	one	copy	of	the	variable	that	
is	shared	among	all	instances	of	the	class.
– Declared	with	static keyword.

• Functions	declared	in	a	class	known	as	methods.

• Instance	methods	can	access	instance	variables,	and	are	called	using	C++-like	
syntax:
– ClassName var = new ClassName();
– var.name_of_method(arg1, arg2, ...);

• Class	methods	or	static	methods	are	called	on	the	name	of	the	class	itself,	
not	an	instance	of	the	class.
– ClassName.name_of_instance_method(args);
– example: Integer.toString(int), Math.pow(x, y)

Class/Method/Variable	Visibility

• public:	available	everywhere
• protected:	only	available	within	the	class	and	subclasses
• private:	only	available	within	the	class

• Similar	to	C++:	
– Have	a	number	of	private	instance	variables	that	maintain	the	"state"	of	

the	class.
– Have	a	number	of	public	methods	that	are	part	of	the	class's	interface.
– Also	common	to	have	private	"helper"	methods.

• Java	traditionally	uses	CamelCase rather	than	separating_with_underscores.
• variables	and	methods	start	with	a	lowercase	letter.
• Class	names	start	with	an	uppercase	letter.
• "this"	works	just	like	in	C++.
• All	objects	by	default	inherit	from	the	"Object"	base	class.

Getting	a	program	started

• Each	class	must	go	in	its	own	file,	which	must	be	named	ClassName.java.
• Any	class	can	have	a	public	static	main()	method,	which	is	where	the	

execution	starts.

Packages

• Java's	standard	library	(all	the	functions	that	the	language	comes	with)	are	
organized	into	packages
– A	hierarchical	organization	system.

• In	Java	you	"import"	classes	from	packages,	whereas	in	C++	you	"#include"	
files.

Collections

• Built	in	classes	for
– Lists	(ArrayList,	LinkedList,	…)
– Sets	(HashSet,	…)
– Maps	(what	Java	calls	hash	tables)	(HashMap)

• All	of	these	are	parameterized	with	generics.
– List<Integer>	intlist =	new	List<Integer>();
– intlist.add(17);
– System.out.println(intlist);		//	prints	[17]

Today's	plan

• Introduce	OOP	concepts	from	the	ground	up	using	Java.
– Rehash	of	142-ish	things	but	at	a	deeper	level	of	understanding.

• Talk	about	why/when	you	should	or	shouldn't	do	certain	OOP	things.

• Lots	of	things	will	be	familiar	from	C++.

• Some	things	will	be	different.

public class Point
{
private int x, y;
public Point(int x, int y) {
this.x = x; this.y = y;

}
public int getX() { return x; }
public int getY() { return y; }
public void setX(int x) { this.x = x; }
public void setY(int y) { this.y = y; }
public double distFromOrigin() {
return Math.sqrt(x * x + y * y)

}
}

Subclassing

• A	class	definition	has	a	superclass	(Object if	not	specified)

• The	superclass	affects	the	class	definition:
– Class	inherits all	field	declarations	from	superclass
– Class	inherits all	private	method	definitions	from	superclass

• Code	within	the	subclass	cannot	directly	access	any	private	fields	or	
methods.

– But	class	can	overridemethod	definitions	as	desired

class ColorPoint extends Point { … }

public class ColorPoint extends Point
{
private Color color;
public ColorPoint(int x, int y, Color c) {
super(x, y); // call the superclass constructor
this.color = c;

}
public Color getColor() { return color; }
public void setColor(Color c) { this.color = c; }

}

An	object	has	a	class

• Using	instanceof can	indicate bad OO style.
– If you're using it to do something different for different objects types,

you probably meant to write a method and have subclasses
override the method.

• instanceof is an example of using reflection
– Reflection is the ability for a computer program to be able to

examine its structure and behavior at run-time.

Point p = new Point(0, 0);
ColorPoint cp = new ColorPoint(0, 0, Color.red)

/* instanceof is a keyword that returns true
if a variable is an instance of a class. */

p instanceof Point // true
cp instanceof ColorPoint // true
cp instanceof Point // true

Why	subclass?

• Instead	of	creating	ColorPoint,	could	add	methods	to	Point
– That	could	mess	up	other	users	and	subclassers of	Point

public class Point {
private int x, y;
private Color color;
…

public Point(x, y) {
// what does color get set to?

}
}

Why	subclass?

• Instead	of	subclassing Point,	could	copy/paste	the	methods
– Means	the	same	thing	if you	don't	use	instanceof,	but	of	course	code	

reuse	is	nice

public class ColorPoint {
private int x, y;
private Color color;
…

}

ColorPoint cp = new ColorPoint(whatevs)
if (cp instanceof Point) {
// do pointy things

}

Why	subclass?

• Instead	of	subclassing Point,	could	use	a	Point instance	variable	inside	of	
ColorPoint.
– Define	methods	to	send	same	message	to	the	Point
– This	is	called	object	composition;	expresses	a	"has	a"	relationship.
– But	for	ColorPoint,	subclassing makes	sense:	less	work	and	can	use	a	
ColorPoint wherever	code	expects	a	Point

public class ColorPoint {
private Point point;
private Color color;
public setX(int x) { point.setX(x); }
…

}

Is-a	vs has-a

• OO	beginners	tend	to	overuse	inheritance	(the	is-a	relationship).

• OO	inheritance	is	notoriously	tricky	to	get	right	sometimes	(e.g.,	writing	
methods	that	test	for	equality)
– boolean equals(Point	a,	Point	b)
– What	if	a	&	b	can	be	Points	or	ColorPoints?

• Many	real-world	relationships	can	be	expressed	using	is-a	or	has-a,	even	if	
the	most	natural	way	seems	to	be	is-a.
– ColorPoint could	be	written	using	object	composition.

Circle	and	ellipse	problem

• What	should	the	relationship	be	between	a	Circle	class	and	an	Ellipse	class?

Circle	and	ellipse	problem

• Circles	are	specific	types	of	ellipses,	so	a	Circle	is-a Ellipse.

public class Ellipse {

private int radiusX, int radiusY;

public void setRadiusX(int rx) { radiusX = rx; }

public void setRadiusX(int rx) { radiusY = ry; }

public int getRadiusX() { return radiusX; }

public int getRadiusY() { return radiusY; }

}

public class Circle extends Ellipse {

…

}

Circle	and	ellipse	problem

• Circles	are	specific	types	of	ellipses,	so	a	Circle	is-a Ellipse.

• But	now	Circle	has	a	setRadiusX()	method.

• Furthermore,	what	would	that	method's	implementation	look	like?

Circle	and	ellipse	problem

• Different	solution:	make	Ellipse	a	subclass	of	Circle.
– "An	Ellipse	is	a	Circle	with	an	extra	radius	field."

public class Circle {

private int radius;

public void setRadius(int r) { radius = r; }

public int getRadius() { return radius; }

}

public class Ellipse extends Circle {

private int radiusY;

// assume existing radius is for X dimension.

}

Circle	and	ellipse	problem

• Different	solution:	make	Ellipse	a	subclass	of	Circle.
– "An	Ellipse	is	a	Circle	with	an	extra	radius	field."

• Just	as	many	problems	here:

• What	does	it	mean	when	an	Ellipse	calls	Circle's	setRadius or	getRadius
method	(which	radius?)

One	solution:	Immutability

• Let	Circle	inherit	from	Ellipse	and	eliminate	mutator methods.

public class Ellipse {

private int radiusX, int radiusY;

public int getRadiusX() { return radiusX; }

public int getRadiusY() { return radiusY; }

}

public class Circle extends Ellipse { … }

• Circle still has two radius accessor methods.
• As long as Circle's constructor forces radiusX = radiusY, there's no

way to violate that constraint later.

Other	solutions

• Let Circle and Ellipse inherit from some common superclass (rather
than one from the other).

• Let setRadiusX() return success or failure.

• Drop inheritance entirely.

• Drop Circle; let users (manually) handle circles as instances of Ellipse.

What	inheritance	really	is	for

• Inheritance	gets	you	into	trouble	when	it	seems	like	the	relationship	is	"is-a,"	
but	it	actually	is	"is-a-restricted-version-of."
– Circle	and	Ellipse
– Person	and	Toddler

• Certainly	a	Toddler	is	a	Person.
• But	what	if	a	Person	has	a	method	called	walk(int distance).
• Toddlers	can't	walk!

• Inheritance	should	be	used	to	add	extra	detail	to	a	superclass	(e.g.,	a	Monkey	
is	an	Animal),	not	to	restrict	functionality.
– ColorPoint is	(probably)	fine	to	inherit	from	Point

Try	this	one	out

• I	want	to	declare	a	class	ThreeDPoint.

• Should	this	inherit	from	Point?
– What	are	the	pros	and	cons?

Something	different:	Method	overriding

• In	OOP,	a	subclass	may	override	a	method	from	a	superclass.
• Just	re-define	the	method	in	the	subclass.

In	C++,	what	does	this	do?
class Base {

public: int f() { return 1; } };

class Derived: public Base {

public: int f() { return 2; } };

int main() {

Base b;

Derived d;

cout << b.f() << endl;

cout << d.f() << endl;

b = d;

cout << b.f() << endl;

Base *b2 = &d;

cout << b2->f() << endl;

}

Base *b2 = &d;
cout << b2->f() << endl;

• With	a	pointer	to	an	object,	a	call	to	a	method	of	that	object	calls	the	version	
of	the	method	specified	by	the	type	of	the	pointer,	not	the	type	of	the	object	
being	pointed	to.

• Can	be	changed	with	the	C++	keyword	virtual.

• With	a	pointer	to	an	object,	a	call	to	a	virtual	method	of	that	object	calls	the	
version	of	the	method	specified	by	the	type	of	the	object	being	pointed	to.

In	C++,	what	does	this	do?
class Base {

public: virtual int f() { return 1; } };

class Derived: public Base {

public: int f() { return 2; } };

int main() {

Base b;

Derived d;

cout << b.f() << endl;

cout << d.f() << endl;

b = d;

cout << b.f() << endl;

Base *b2 = &d;

cout << b2->f() << endl;

}

• The	key	idea	here	is	called	dynamic	dispatch:
– Selecting	which	implementation	of	a	polymorphic	operation	to	call	at	

run-time,	rather	than	compile-time.
• This	is	the	opposite	of	what	we've	learned	about	lexical	(static)	scope:

– In	lexical	scope,	we	always	know	at	compile-time	what	variables	will	be	
referred	to	and	what	functions	will	be	called.

• With	OOP,	it	is	possible	for	a	variable	to	refer	to	an	object	whose	type	is	
uncertain	at	compile	time.

Base b;

Derived d;

Base *b2 = nullptr;

if (rand() > 0.5))

b2 = &b;

else

b2 = &d;

b2->f();

Java	virtual	methods

• In	Java,	all	methods	are	virtual.
– This	behavior	cannot	be	changed.
– If	a	subclass	needs	to	call	a	superclass's	version	of	an	overridden	method	

from	a	subclass,	there	is	the	super keyword:

public class Base {

public int f() { return 1; } }

public class Derived extends Base {

public int f() { return 2 + super.f(); } }

Java	virtual	methods

public class ThreeDPoint extends Point
{
private int z;

// override distFromOrigin in Point
public double distFromOrigin() {
return Math.sqrt(
getX()*getX() + getY()*getY() + z*z;

}
}

Java	I/O

• Main	way	of	outputting	to	the	screen:

• System.out.println(x);
– takes	one	argument	of	any	type
– if	x	is	an	object,	its	toString()method	will	be	automatically	called	to	

convert	it	to	a	String.
– also	System.err.println(x);

– System.out is	an	OutputStream object	(similar	to	cout in	C++)

Java	I/O

• There	are	about	50	bazillion	ways	to	do	input	in	Java.
• Easiest	way:

– import java.util.*;
– Scanner scanner = new Scanner(System.in)

• System.in is	an	InputStream object	(similar	to	cin in	C++)
– Now	call	any	of	the	following:
– scanner.nextInt() [or	nextLong(),	nextFloat(),	etc]

• all	of	these	stop	at	the	first	whitespace	found
– scanner.nextLine()

• reads	a	whole	line,	returns	a	String

Try	this

• Make	a	program	that	reads	in	integers	from	the	keyboard	until	you	enter	-1.

Collections

• Java	has	many	collection	classes.
– ArrayList,	HashSet,	HashMap most	common.
– Very	few	cases	where	you	need	"real"	arrays;	using	ArrayList is	much	

more	common.

• Syntax	is	similar	to	C++	templates
– e.g.,	C++'s	vector,	set,	and	map

• Gotcha:	Only	objects	can	be	stored	in	Java's	collection	classes.
– No	ints,	floats,	booleans,	doubles,	etc in	ArrayLists!		
– Java	has	"wrapper"	classes	Integer,	Float,	Boolean,	Double	that	you	use	

instead,	and	Java	does	the	conversion	for	you.

ArrayList (example	for	ints)

• Creation
– List<Integer> list = new ArrayList<Integer>();

• Put	stuff	in
– list.add(x); // adds x to end by default
– list.add(i, x); // inserts x at list[i]
– list.set(i, x); // changes list[i] to x

• Get	stuff	out
– list.get(i); // returns list[i]

• Other stuff
– list.size(), list.contains(x),
list.indexOf(x), list.remove(i),

Enhanced	for	loop

for (int i = 0; i < list.size(); i++) {
System.out.println(list.get(i));

}

for (int x : list) {
System.out.println(x);

}

Try	this

• Make	a	program	that	reads	in	integers	from	the	keyboard	until	you	enter	-1.
• Add	all	the	integers	(as	they're	entered)	to	an	ArrayList.
• Print	out	all	the	integers.		Try	this	two	ways:

– System.out.println(list);
– With	the	enhanced	for	loop.

Try	this

• Make	a	program	that	reads	in	integers	from	the	keyboard	until	you	enter	-1.
• Add	a	static	method	fib(n)	that	computes	the	n'th Fibonacci	number.		Write	

this	the	standard	(slow,	recursive)	way.
• Print	out	the	Fibonacci	value	of	each	number	as	they're	entered.

– What	is	the	max	Fibonacci	#	you	can	compute	before	you	get	an	error?

HashMaps

• Java's	has	a	few	hashtable classes.
• Most	common	is	HashMap.

• The	Java	language	was	constructed	with	hashtables in	mind.
• The	Object	class	has	a	hashCode()	method.

– Because	all	objects	inherit	(directly	or	indirectly)	from	Object,	all	classes	
have	a	hashCode()	method!

• If	you	ever	make	a	class	that	you	want	to	use	as	the	key	of	a	hashtable,	you	
should	override	the	hashCode()	and	equals()	methods.
– Don't	worry	about	this	at	the	moment.

HashMap (example	for	String	map	to	int)

• Creation
– Map<String, Integer> map
= new HashMap<String, Integer>();

• Put	stuff	in
– map.put(s, i); // associates key s with value i

• Get	stuff	out
– map.get(s); // returns whatever value s is
associated with

• Other	stuff
– map.size(), map.containsKey(s),
map.keySet(), map.remove(s)

Enhanced	for	loop

You can use the enhanced for loop to iterate through a map:

for (String key : map.keySet()) {
int value = map.get(key);
// do something with key and/or value

}

Try	this:	memoized Fibonacci	in	Java

• Add	a	HashMap<Integer,	Integer>	as	a	static	field	to	your	class.
– This	will	store	the	cached	Fibonacci	values.

• Alter	your	Fibonacci	method	so	it	does	the	following:
– For	fib(n):
– if	n	=	0	or	n	=	1,	return	n
– Check	if	n	is	a	key	in	the	hashtable.

• If	it	is,	get	the	corresponding	value	and	return	it.
• If	it's	not,	then	

– compute	v	=	fib(n-1)	+	fib(n-2)
– put	the	mapping	from	n	to	v	in	the	hashtable
– return	v

HashSets

• A	Set	(ADT)	is	an	unordered collection	of	items.
– A	List	is	an	ordered collection	of	items.

• Java	has	a	HashSet class	that	implements	this	ADT.
• Similar	to	C++'s	std::set	class.

HashSet (example	for	ints)

• Creation
– HashSet<Integer> set = new HashSet<Integer>();

• Put	stuff	in
– set.add(x); // adds x to the set

• Test	if	something	is	in	the	set
– set.contains(x); // returns true or false

• Remove something from the set
– set.remove(x);

• Other stuff
– set.size(), set.isEmpty(), set.clear()

