Interpreters



Implementing PLs

Most of the course is learning fundamental concepts for
using PLs
— Syntax vs. semantics vs. idioms
— Powerful constructs like closures, first-class objects,
iterators (streams), multithreading, ...
An educated computer scientist should also know some
things about implementing PLs
— Implementing something requires fully understanding its
semantics
— Things like closures and objects are not “magic”

— Many programming tasks are like implementing PLs

* Example: rendering a document (“program” is the [structured]
document and “pixels” is the output)



Ways to implement a language

Two fundamental ways to implement a programming
language X

 Write an interpreter in another language Y
— Better names: evaluator, executor
— Immediately executes the input program as it's read

 Write a compiler in another language Y to a third
language Z

— Better name: translator

— Take a program in X and produce an equivalent program in
Z.



First programming language?
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First programming language?




Interpreters vs compilers

* Interpreters

— Takes one "statement" of code at a time and executes
it in the language of the interpreter.

— Like having a human interpreter with you in a foreign
country.
 Compilers

— Translate code in language X into code in language Z
and save it for later. (Typically to a file on disk.)

— Like having a person translate a document into a
foreign language for you.



Reality is more complicated

Evaluation (interpreter) and translation (compiler)
are your options

— But in modern practice we can have multiple layers of
both

A example with Java:

— Java was designed to be platform independent.

* Any program written in Java should be able to run on any
computer.

— Achieved with the "Java Virtual Machine"

* Anidealized computer for which people have written
interpreters that run on "real" computers.



Example: Java

Java programs are compiled to an "intermediate
representation” called bytecode.
— Think of bytecode as an instruction set for the JVM.

Bytecode is then interpreted by a (software)
interpreter in machine-code.

Complication: Bytecode interpreter can compile
frequently-used functions to machine code if it
desires.

CPU itself is an interpreter for machine code.



Sermon

Interpreter versus compiler versus combinations is about a
particular language implementation, not the language definition

So clearly there is no such thing as a “compiled language” or an
“interpreted language”

— Programs cannot “see” how the implementation works

Unfortunately, you hear these phrases all the time
— “Cis faster because it’'s compiled and LISP is interpreted”

— Nonsense: | can write a C interpreter or a LISP compiler, regardless of
what most implementations happen to do

— Please politely correct your bosses, friends, and other professors



Okay, they do have one point

In a traditional implementation via compiler, you do not need
the language implementation (the compiler) to run the

program
— Only to compile it
— So you can just “ship the binary”
But Racket, Scheme, LISP, Javascript, Ruby, ... have eval

— At run-time create some data (in Racket a list, in Javascript a
string) and treat it as a program

— Then run that program

— Since we don’t know ahead of time what data will be created
and therefore what program it will represent, we need a
language implementation at run-time to support eval

* Could be interpreter, compiler, combination



Digression

e Eval/Apply
— Built into Racket, traditionally part of all
LISP-ish interpreters

* Quote
— Also built-in

— Happens behind the scenes when you use the
single quote operator: '



Back to implementing a language

"((lambda (x) (+ x x)) 7)" Possible

Errors /
‘ warnings
Parsing \ call

/\
Function Negate
P I
¢ n Constant
/\ | Possible

E
var var 4 EEEEp
| | warnings
IR ¥
Static checking Rest of

(what checked implementation
depends on PL)




Skipping those steps

If language to be interpreted (X) is very close to the
interpreter language (Y), then take advantage of this!

— Skip parsing? Maybe Y already has this.

— These abstract syntax trees (ASTs) are already ideal
structures for passing to an interpreter

We can also, for simplicity, skip static checking

— Assume subexpressions are actually subexpressions
* Do not worry about (add #£f “hi”)

— For dynamic errors in the embedded language, interpreter
can give an error message (e.g., divide by zero)



Write Racket in Racket
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Heart of the interpreter
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Mini-Eval: Evaluates an expression to a value (will call

apply to handle functions)
Mini-Apply: Takes a function and argument values and

evaluate its body (calls eval)



(define (mini-eval expr env)
isthisa  expression?
iIf so, then call our special handler

for that type of expression.

)

What kind of expressions will we have?

 numbers

* variables (symbols)

 math functions +, -, *, etc

« others as we need them



* How do we evaluate a (literal) number?

e Just return it!

e Psuedocode for first line of math-eval:

— If this expression is a number, then return it.



* How do we handle (add 3 4)°?

* Need two functions:
— One to detect that an expression is an addition.
— One to evaluate the expression.



(add 3 4)

* |s this an expression an addition expression?
(equal? 'add (car expr))

* Evaluate an addition expression:
(+ (cadr expr) (caddr expr))



You try

Add subtraction (e.g., sub)
Add multiplication (mul)
AdC
AdC

It's your programming language, so you may
name these commands whatever you want.

division (div)

exponentiation (exp)



(add 3 (add 4 5))

* Why doesn't this work?



(add 3 (add 4 5))

* How should our language evaluate this sort of
expression?
 We could forbid this kind of expression.

— Insist things to be added always be numbers.

* Or, we could allow the things to be added to
be expressions themselves.
— Need a recursive call to math-eval inside eval-add.



You try

* Fix your math commands so that they will
recursively evaluate their arguments.



Adding Variables



Implementing variables

* Represent a frame as a hashtable.
* Racket's hashtables:

(define ht (make-hash))
(hash-set! ht key value)
(hash-has-key? ht key)
(hash-ref ht key)



Implementing variables

* Represent an environment as a list of frames.

hash table hash table

X->7 X->2
y->1 y->3




Implementing variables

* Two things we can do with a variable in our
programming language:
— Define a variable

— Get the value of a variable



Getting the value of a variable

* New type of expression: a symbol.

 Whenever math-eval sees a symbol, it should
look up the value of the variable
corresponding to that symbol.



Getting the value of a variable

(define (lookup-variable-value var env)
Pseudocode:

we

If our current frame has the variable bound,

we

then get its value and return it.

we

Otherwise, if our current frame has a frame

we

pointer, then follow it and try the lookup

we

there.

we

Otherwise, throw an error.

we



Getting the value of a variable

(define (lookup-variable-value var env)
(cond ((hash-has-key? (car env) var)
(hash-ref (car env) var))
((not (null? env))
(lookup-variable-value var (cdr env)))
((null? env)

(error "unbound variable" var))))



Defining a variable

 Math-eval needs to handle expressions that
look like (define variable exprl)

— exprl can be a sub-expression

* Add two functions to the evaluator:
— definition?: tests if an expr fits the form of a
definition.
— eval-definition: extract the variable, recursively

evaluate exprl, and add a binding to the current
frame.



Implementing conditionals

e We will have one conditional in our mini-
language: ifzero

e Syntax: (ifzero exprl expr2 expr3)

* Semantics:
— Evaluate exprl, test if it's equal to zero.
— If yes, evaluate and return expr?2.
— If no, evaluate and return expr3.



Implementing conditionals

e Add functions ifzero? and eval-ifzero.



