Exceptions and Threads

Exceptions

What do you do when a program encounters
an anomalous, unusual event?

— Try to open a file and it's not there

— Try to convert a string to an integer and it's not a
valid integer

— Try to dereference a pointer and it's null

Exceptions

 You could

— crash the program
* Not a great idea

— return an error code
e But what if all return values are "meaningful?"

— force the user to manually check the condition
before taking the action that might cause
problems

* More work for the programmer

Exceptions

e Java (and other languages) choose to "throw
an exception.”

Exceptions

* An Exception is an encapsulation of a problem
that occurred while your program was
running.

* Exceptions allow the programmer to separate
the logic of the exceptional situation itself
from what to do about it.

— The other ways usually force you to couple

together the code that generated the error with
the code that handles the error situation.

Exceptions

 When an exceptional situation occurs, your
code can choose to "throw an exception.”

* When this happens, another piece of code
must "catch the exception."

try {
Scanner sc = new Scanner(new File("data.txt"));

// read data from the scanner..

}
catch (FileNotFoundException e) {

System.err.println("Couldn’'t open file.");

* Any code that has the ability to throw an exception
should be placed inside a try block.

— Here, the Scanner constructor may throw an exception if it can't
find data.txt

 The catch block afterwards is the error handler code.

try {
Scanner sc = new Scanner(new File("data.txt"));

// read data from the scanner..

}

catch (FileNotFoundException e) {
System.err.println("Couldn't open file.");

}
 If the code in the try block doesn't throw an exception, the
catch block is skipped.

 If the code in the try block does throw an exception, as
soon as the exception happens, the catch block starts
running. After it finishes, program continues with whatever
Is after the catch block.
— Therefore you can recover from errors gracefully.
— Error handling logic is separated from the "normal program" logic.

 Methods that have the ability to throw
exceptions must declare what exceptions are

possible.

public Scanner (File source)
throws FileNotFoundException {

}

« Java APl tells you which methods throw
which exceptions.

» Code will not compile without proper try/
catch blocks.

Code can further decouple the "throwing" logic from the
"catching" logic:
void methodA() throws SomeException {

// code here that may throw SomeException

}

void methodB() throws SomeException {

methodA () If a method wants to call
} some code that may throw

void methodC() { an exception, the method
try { methodB(); } must either handle it (with a

catch block) or pass it back
{ ..} to the calling method (add
"throws" to the declaration

line).

catch (SomeException e)

Call Stack

methodA()

methodB()

methodC()

A throws an exception.
Java looks for a catch
block in A.

There is no catch block in
A. Java looks for a catch
block in B.

There is no catch block in
B. Java looks for a catch
block in C.

* "Normal" Exceptions

— Inherit from class Exception. Must be caught with
a try block somewhere.

* Runtime Exceptions

— Inherit from class RuntimeException. Do not
have to be caught.

— DivideByZeroException, IndexOutOfboundsException,
NullPointerException.

e Errors

— Inherit from class Exrroxr. Do not have to be caught
because they indicate something a reasonable
application probably can't recover from anyway (e.g.,
out of memory, stack overflow).

Takeaway

 There are some methods that force you to
write error-handling code. Won't compile
without the try-catch.

 Wrap the error-causing code in a try block
(can wrap as much code as you want), and
then put a catch block and try to do
something intelligent in it (can be as simple as
printing a message.)

More advanced stuff

Writing your own Exception classes

Writing your own methods that throw
Exceptions (you can also throw exceptions
that come with Java)

Beyond the scope of this class; consult a Java
book; won't be necessary for projects or
exams.

C++ also has exceptions; other languages too.

Threads

* Most programs you write do one thing at a
time.

* Execution proceeds in a linear fashion, where
the previous command always completes
before the next one starts.

e Sometimes we need to write programs that
do multiple things at once.

e Examples
— Display a loading animation while accessing a big
file.
* e.g., web browsers
— Handling requests in a client-server application.
* e.g., web servers
— Monitoring some situation in the background

while letting the program do other things.
e e.g., your email application

— Games, games, games (and other GUI stuff)

* Separate threads to handle information coming from
keyboard, mouse, network.

* Asingle CPU really can't do multiple things at
once.

— If you have multiple CPUs, OK.

* Simulated by switching back and forth
between tasks really quickly.

Processes vs threads

* A process is a self-contained execution
environment.

— Process is often synonymous with "program" or
"application"” but not always.

— Most importantly, each process has its own
memory space.

— Processes can communicate with each other
through interprocess communication (IPC) [see
networking class]

Processes vs threads

e A thread is an execution environment within a
process.

— Within a process, there can be multiple threads,
and they all share the same memory space.

— Threads communicate with each other through
variables (memory is shared, so variable are
shared among threads).

* By default, all programs are single-threaded.

— These are the kinds of programs you've been
writing so far.

Java Threads

Every thread is associated with a Thread object.

The Thread class has a single method that you
will override:
public void run()

The code inside this method defines what the
thread will do.

To start the thread, call the start () method.
— You never directly call run () yourself.

Takeaway

* A call to start() returns immediately.

* The code in run() then starts running in a
thread parallel to your main program.

rest of main() t2's run()

print message print O
that print 1
both threads print 2
have started print 3

Sleeping

* Threads can go to sleep, which pauses that
thread for a certain amount of time.

* During that time, the CPU will only deal with
other threads.

* After the time is elapsed, the thread wakes up
and continues.

Good sleep

System.out.println("Falling asleep!")
try

{

// goes to sleep for one second
Thread.sleep(1000)

} catch (InterruptedException e) { }

System.out.println("Now I'm awake!")

Bad sleep

int start = System.currentTimeMillis ()
int finish = start + 1000;
while (System.currentTimeMillis() < finish)

{
}

InterruptedException

 Some thread methods throw
InterruptedException, which must be caught.

* You can decide what to do with it.

* Fine to ignore it (for this course).

Join

e Also common to want to pause execution of a
thread until another thread finishes.

* |ftis athread object, you can call
t.join()

This will pause the current thread (a la
sleep ()) but will wake up assoon ast
finishes.

e So far, threads are easy!

e So far, threads are easy!

* Where threads become hard is when they
start sharing variables.

’i' \‘\'
b/

* Imagine two ATMs and two people who have
a shared account. The account has S20.

* Both people go up to two different ATMs at
the same time. Both try to withdraw $20
simultaneously.

void withdraw(int amount) {

if (balance >= amount)
balance -= amount;

balance >= amount has multiple steps:
* Retrieve the current value of balance.
* Retrieve the current value of amount.
 Compare those two values.

balance >= amount has multiple steps:
e Retrieve the current value of balance.
* Retrieve the current value of amount.
 Compare those two values.

ATM 1: Retrieve current balance (= 20)
ATM 2: Retrieve current balance (= 20)
ATM 1: Retrieve current amount (= 20)
ATM 2: Retrieve current amount (= 20)
ATM 1: Compare => true
ATM 2: Compare => true

Both ATMs dispense cash!

* So it appears we can withdraw $40 from a $20
balance!

* And then our balance would be negative!
 But no, it's much, much worse.

balance -= amount has multiple steps:

* Retrieve the current value of balance.
* Retrieve the current value of amount.
e Subtract, put result in balance.

balance -= amount has multiple steps:
* Retrieve the current value of balance.
* Retrieve the current value of amount.
 Compare those two values.

ATM 1: Retrieve current balance (= 20)
ATM 2: Retrieve current balance (= 20)
ATM 1: Retrieve current amount (= 20)

ATM 2: Retrieve current amount (= 20)
ATM 1: Subtract => 0 => store 0 in balance
ATM 2: Subtract => 0 => store 0 in balance
Both ATMs dispense cash!

* Pathological example; very possible that
nothing bad will happen at all.

— And then you don't notice anything bad
happening until your bank starts mysteriously
losing money ever so often...

* Called a memory inconsistency error.

— Happens when different threads have inconsistent
views of what should be the same information.

