
Programming Languages

Closures-ish in Python and C++

Higher-order programming

•  Higher-order programming, e.g., with map and filter, is great

•  Language support for closures makes it very pleasant

•  Without closures, we can still do it more manually / clumsily
–  In OOP (e.g., C++) with classes with private members
–  Python has closures, though they are slightly clunky

•  Working through this:
–  Shows connections between languages and features
–  Can help you understand closures and objects

Fall 2011 2 CSE341: Programming Languages

C++

•  In the beginning, there was the function pointer.
–  Not a substitute for full-fledged closures, because a function

pointer points to code only, no environment.

Fall 2011 3 CSE341: Programming Languages

C++

•  In the beginning, there was the function pointer.
–  Not a substitute for full-fledged closures, because a function

pointer points to code only, no environment.
•  Then came objects, capable of having "private data" by using

private members.
–  People started using "function objects" by creating classes

that overload the parentheses operator (yes, you can do
that).

Fall 2011 4 CSE341: Programming Languages

C++

•  In the beginning, there was the function pointer.
–  Not a substitute for full-fledged closures, because a function

pointer points to code only, no environment.
•  Then came objects, capable of having "private data" by using

private members.
–  People started using "function objects" by creating classes

that overload the parentheses operator (yes, you can do
that).

•  In 2011, the C++ standard was updated to include "function
objects" as well as lambdas.
–  This is super-awesome and really cool, but not all compilers

support everything yet.

Fall 2011 5 CSE341: Programming Languages

Lambda expressions in C++

[capture option] (args) { block of code }

C++ will try to automatically figure out the return type for you, but if
it can't, you can also do:

[capture option] (args) -> returnType { block of code }

Fall 2011 6 CSE341: Programming Languages

Lambda expressions in C++

[capture option] (args) { block of code }

The "capture option" tells C++ how to handle non-local variables in
the block of code.

[] means capture nothing (if you have no non-locals)
[=] means capture non-locals by value (make a copy)
[&] means capture non-locals by reference (don't make a copy)

Fall 2011 7 CSE341: Programming Languages

Map and filter

•  Part of the C++ algorithms library
–  map is called "transform"
–  many of these higher-order functions don't use vectors or

arrays directly, but operate on "iterators."
–  An iterator is a data type that expresses the abstraction of a

"sequence," whether that sequence is implemented as a
vector, array, or looping through some other data structure

–  other things that have iterators
•  strings (sequence of characters)
•  keys in a hashtable

Fall 2011 8 CSE341: Programming Languages

Python

•  Python has fewer hoops to jump through because the language
was designed with closures in mind (e.g., nested function defs
are OK).
–  C++'s "closures" (which aren't really closures) had to be

hacked in later.
•  Syntax is cleaner in Python as well because no capture by

value/capture by reference, plus no data type declarations
needed because it's a dynamically typed language.
–  Summary: syntax closer to Racket/Scheme's syntax.

Fall 2011 9 CSE341: Programming Languages

