Programming Languages

Streams and Memoization

Adapted from Dan Grossman’s PL class,
U. of Washington



Review

A thunk is a function of no arguments used to explicitly delay a
result.

(delay expression) => returns a thunked version of
expression

— has to be implemented as a special form so that
expression won't be evaluated until we force it.

— Once forced, later forces won't re-evaluate expression,
but rather the same value will be returned for every
subsequent force.

— Called a promise. (in that we say delay returns a promise)

(force promise) => returns the value of the original
delayed expression, either by evaluating it, or saving the cached
value.



Example

define x 1)

define y (delay Xx)

set! x 2)

(
(
(force vy)
(
(force vy)



Streams

One common use for promises is to create a new data type
called a stream.

Stream == List

— Only difference is the car of a stream is eager (evaluated
normally), but the cdr is lazy (implemented as a promise).

— (Car and cdr of normal lists are eager.)

Create a stream with stream-cons:

(define-syntax-rule (stream-cons first rest)
(cons first (delay rest)))

This code creates a special form that literally replaces every call
to stream-cons with the line (cons <first arg> (delay <2"d arg>)).

A normal function wouldn't work because it would evaluate both
arguments, but we want to delay evaluation of the rest
argument.



Useful stream functions

Most of these are just the list functions we know and
love with the prefix "stream-"

List version Stream version

"() the-empty-stream
null? stream-null?

car stream-car

cdr stream-cdr

stream->list
list-ref stream-ref

stream-enumerate



Finite Streams

* Not any more useful than lists.

— (stream-cons 1
(stream-cons 2
(stream-cons 3 the-empty-stream)))

« The power of streams comes from making infinite streams
— Impossible to do with lists.

— Easy with streams because we don't explicitly represent all
the values (since there are an infinite number of them).

— Instead, we represent the first one explicitly, and then
promise to provide the next one as soon as it's needed.



Two common stream idioms

 Consider these two versions of an infinite stream of ones:
e (define ones (stream-cons 1 ones))

e (define (make-constant-stream item)

(stream-cons item
(make-constant-stream item)))

(define ones-alt (make-constant-stream 1))



Next examples

Create an infinite stream of integers, starting at zero and
Increasing by one.

— Hint: define a function that takes an argument x and returns
a stream of integers starting from x.

Define a function stream-map that duplicates the functionality
of map for streams.

Define an alternate version of the infinite stream of integers
starting from zero by using stream-map and an infinite stream
of ones.

Define a function stream-filter that duplicates filter.

Define a function not-divisible-by that takes a stream of
iIntegers and an integer n and removes all the integers that are
divisible by n from the stream.

Define an infinite stream of prime numbers.
— Hint: use not-divisible-by on a stream of the ints from 2.
Define an infinite stream of the Fibonacci numbers.



