Introduction to Java



The plan

e Racket will return!

— Final project will be writing a Racket interpreter in
Java.

e Lecture will not recount every single feature
of Java.
— You may need to do some digging on your own.

— Lots of help online (Google is your friend).



Java Resources

* Java tutorial
— http://docs.oracle.com/javase/tutorial/java
* Java documentation
— http://docs.oracle.com/javase/6/docs/api
* And if you're confused about anything, Google
will find it.
— There's so much Java stuff on the web because

most undergraduate curriculums now teach Java
as their first or second language.



Logistics

 We will use Java version 6.
— Java 7 is compatible, but not as widely adopted.
— (It also won't run on my Mac, so we're using v6).

 Many powerful IDEs out there.

— | will be using an IDE called NetBeans, which is
free.

— Installation instructions will be on the class
webpage.



Next Assignments

Project 4 — out now, still in Racket

Project 5 — Probably a Java warmup
assignment, given after Easter break.

Project 6 — Still thinking about it, probably
given out 2"4 week of April.

Project 7 — Probably the Racket interpreter in
Java. Will be due near the end of classes.



History of Java



History of Java

 Java was first used in the 15t century, in
Yemen, and quickly spread to Egypt and North
Africa.






The Real History of Java



The Real History of Java

e Java is millions of years old and 135 million
people are see Java every day.



114°E




The Real, Real History of Java

* The Java project was initiated at Sun
Microsystems in 1991.

— Supposedly named after the large quantities of coffee
the language designers drank.

* Originally was designed to be embedded in
consumer electronic devices, like cable TV set-top
boxes, but it was too advanced for the cable
television industry at the time.

* Language evolved into a general-purpose
programming language.



Java was desighed to use a syntax similar to C
and C++.

— Lots will be familiar.

Java is (almost completely) object oriented.

— All data types are classes, except for the primitives
like int, long, float, double, char, boolean.

— All code is written inside some class.

e All functions are methods (no free-floating functions).

— Single inheritance only (C++ allows multiple).
Statically typed (like C++).
Has generics (similar to C++ templates).



Same basic programming properties as C++.

— Must declare variables before use, say what type
they are.

— If/else, for, while, do-while, switch work just like C++.

No pointers!

— Java uses a similar idea called references, which are
"safer" than pointers.

All objects stored on the heap (using "new").
Garbage collection

— No explicit allocation/deallocation of memory. ©



Defining a class

e Take a look at the Rational class.



* Create primitive variables just like in C++:
—intx =4;
— float f = 3.02;
— boolean b = true; // note lowercase

e Strings are objects, but Java lets you create
them like a primitive:
— String s = "a wonderful string";

e All other objects are created using new:

— ClassName var = new ClassName(args);

— Constructor automatically chosen based on data
types of arguments.



e Variables declared in a class are sometimes
called fields.

* |nstance variables (or fields) have one copy of
the variable per instance of the class.

 Class variables or static variables have one

copy of the variable that is shared among all
instances of the class.



* Functions declared in a class known as
methods.

* Instance methods can access instance
variables, and are called using C++-like syntax:
— ClassName var = new ClassName();
— var.name_of method(args);

* Class variables or static variables have one
copy of the variable that is shared among all

instances of the class.
— ClassName.name_of instance_method(args);



Class/Method/Variable Visibility

public: available everywhere

protected: only available to self and
subclasses (not used that much)

private: only available to self

Common to have instance variables as private
and methods that are part of the class's
interface as public.



Java traditionally uses CamelCase rather than
separating with _underscores.

variables and methods start with a lowercase
letter.

Class names start with an uppercase letter.
"this" works just like in C++.

All objects by default inherit from the "Object"
base class.



Getting a program started

* Each class must go in its own file, which must
be named ClassName.java.

e Any class can have a public static main()
method, which is where the execution starts.



Packages

e Java's standard library (all the functions that

the language comes with) are organized into
packages

— A hierarchical organization system.

* |nJava you "import" classes from packages,
whereas in C++ you "#include" files.



Collections

* Builtin classes for
— Lists (ArraylList, LinkedList, ...)
— Sets (HashSet, ...)
— Maps (what Java calls hash tables) (HashMap)

* All of these are parameterized with generics.

— List<Integer> intlist = new List<Integer>();
— intlist.add(17);
— System.out.printIn(intlist); // prints [17]



