Picking Research Projects

Interesting CS research questions

- Explore or explain the behavior of algorithms, systems, protocols, and other computational artifacts.
- Typical form of research questions:
 - "Why..."
 - "How..."
 - "Under what circumstances..."
 - "What are the necessary and sufficient conditions for..."
- Answers: not yes/no, but paragraphs, mathematical or statistical models, simulations, etc.

Framework for research problems

Framework for research problems

- System: aspects influenced by a system designer.
 - Specific algorithm used, system architecture, data structures, parameter settings, etc.
- Task: aspects influenced by a prospective user.
 - Specific queries, requests, input data, etc.
- Environment: aspects influenced by neither a designer or a user.
 - Network environment, availability cycles or memory, etc.
- Behavior: performance of the task by the system within the environment.

- What are aspects of the system?
 - PageRank, server farms, indices
- Task?
 - queries, preferences, language
- Environment?
 - document distribution, network load
- Behavior?
 - Retrieval performance

Factors to consider

- Importance
 - How important is the research topic within the larger research and application community?
- State of knowledge
 - What do we know already? What is the position of the research with respect to "the frontier?"
- Unique competence
 - Are you uniquely qualified to address this research? What is your "secret weapon?"
- Interest
 - How much does this research problem interest you personally? Do you have a passion for this problem?

Assessing importance

- Audience
 - Who will care about the answer?
- Impact
 - Will different answers change what research is done next? ...what is done by practitioners?
- Longevity
 - How long will the answer be relevant and important?

How many CS talks begin

- Graph of rapid growth in...
 - Processing power (most common)
 - Heat generation
 - Relative size or cost of caches
 - Size of the web
 - Installed base of specific devices
 - **—** ...
- Why?

"The Frontier"

- Important work typically takes place at the *frontier* of a field.
- You want your research findings to be relevant when they are published, not just now.
- The frontier in CS has two components:
 - Changing face of CS knowledge (a problem common to all fields of science)
 - Changing environment of computer technology and applications (a particularly challenging element of computer science)

"I skate to where the puck is going to be, not where it has been."

Wayne Gretzky

Methods for identifying frontiers

- New observations of findings that need explanation.
- New opportunities provided by instruments, methods of study, or theoretical frameworks.
- Converging lines of research that combine to provide new opportunities.
- Emerging needs from outside the field (e.g., web search, bioinformatics, ecological monitoring, autonomous vehicles).
- New questions or conjectures by researchers with good track records.

"Good research is done with a shovel, not with tweezers... You should find an area where you can get a lot out of it fast."

- Roger Needham

Unique competence

- What is it that makes you better able to address this research question than others?
- What is your "secret weapon?"
- Poor answers
 - "I am smarter than other people." (rarely true)
 - "I will work harder, longer, or faster."
 (There is always someone who can to those things better than you, and that weapon can cause unacceptable losses: harm to family, friends, and personal happiness.)

"Always have a secret weapon—
the biggest computer,
a problem imported from another field
that others haven't heard of yet,
a fact you stumbled on
by being curious about everything,
a friend who is smarter than you are.
Anything, in short, that will give you
an unfair advantage in getting there first.

- Herbert Simon

Personal interest

- Focus your work on areas of personal interest.
- You will work harder, smarter, and more creatively.
- Others will sense your strong interest and want to work with you, support your work, and credit you with innovations.
- Personal interest can be fostered and destroyed.
 Track what affects your interest and use that knowledge.
 - One widely shared factor: speed of progress.

Some properties of a good senior seminar project

- Located at the frontier
 - Identifies an unexplored (or underexplored) question.
 - Experts have significant questions about the outcome.
- Involves experiments.
- Identifies independent and dependent variables.
- Involves understanding behavior, not just design.
- Practical issues:
 - May I build something? Yes. But you must also experiment on it.
 - Better: look for something already built, or an existing algorithm, and figure out how and why it works.

Ideas

- Build a system (or systems) and study it/them.
 - Music recommendation algorithm, new AI for intelligent NPCs in games, web-based system for housing selection, virtual environments (Dr. Sanders)
- Or use an existing system (code is easy to find or implement)
- What happens when you vary the system, task, and/or environment?
 - What behavior emerges? What can you learn? Can you make improvements?

How to succeed in research

- Be careful of framing your work in terms of "building something to do X."
 - What if X is really hard or impossible?
- What lots of people think of as "doing CS" is really building the infrastructure for doing CS.
 - Examples: building new compilers, garbage collectors, networking protocols, machine learning algorithms...

Research questions

- Identify a research question about which a hypothesis can be formulated.
- Typically about algorithms (systems), task, or environments.
- Questions about
 - individual elements (existence proofs)
 - how changes in one element affect another
 - comparisons of two or more elements holding others constant

Heilmeier Questions

- What are you trying to do? Articulate your objectives using absolutely no jargon.
- How is it done today, and what are the limits of current practice?
- What's new in your approach and why do you think it will be successful?
- Who cares?
- If you're successful, what difference will it make?
- What are the risks and the payoffs?
- How much will it cost?
- How long will it take?
- What are the midterm and final "exams" to check for success?