
A PROBABILISTIC MODEL OF HIERARCHICAL MUSIC
ANALYSIS

A Dissertation Presented

by

PHILLIP B. KIRLIN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2014

School of Computer Science

c© Copyright by Phillip B. Kirlin 2014

All Rights Reserved

A PROBABILISTIC MODEL OF HIERARCHICAL MUSIC
ANALYSIS

A Dissertation Presented

by

PHILLIP B. KIRLIN

Approved as to style and content by:

David Jensen, Chair

Neil Immerman, Member

Edwina Rissland, Member

Gary Karpinski, Member

Lori A. Clarke, Chair
School of Computer Science

This dissertation is dedicated to the memory of Paul Utgoff:
scholar, musician, mentor, and friend.

ACKNOWLEDGMENTS

A few pages of 8.5 by 11 paper are hardly sufficient to list all the people who have helped

me along the way to completing this dissertation. Nevertheless, I will try.

First and foremost, I would like to thank my advisor, David Jensen. David has been

a wonderful advisor, and I feel privileged to have worked under his tutelage. Though his

extensive knowledge of artificial intelligence and machine learning have proved indispensable,

it is his knowledge of research methods that has shaped me the most. The fact that he was

able to guide a research project involving a significant amount of music theory — without

possessing such specialized knowledge himself — speaks volumes to his ability to clarify the

basic research questions that underlie a computational study. More importantly, he has

taught me to do the same. Thank you, David, for your never-ending patience; for your

lessons in all things investigational, experimental, pedagogical, and presentational; and for

never letting me give up.

The other members of my committee — Neil Immerman, Edwina Rissland, and Gary

Karpinski — have been excellent resources as well and I would not have been able to finish

this work without them.

I owe a great debt of gratitude to my original advisor, Paul Utgoff, who died too soon.

Paul gave me my start in artificial intelligence research and the freedom to explore the ideas

I wanted to explore. Paul was a dedicated researcher, teacher, and mentor; throughout his

cancer treatments, he always made time for his students. I will always remember his warm

smile, his gentle personality, and late nights playing poker at his home.

v

I cannot thank enough all of the graduate students at UMass with whom I toiled through

the years. Thank you to those in the Machine Learning Laboratory where my trek began:

David Stracuzzi, Gary Holness, Steve Murtagh, and Ben Teixeira; and thank you to to

those in the Knowledge Discovery Laboratory where I finished: David Arbour, Elisabeth

Baseman, Andrew Fast, Lisa Friedland, Dan Garant, Amanda Gentzel, Michael Hay, Marc

Maier, Katerina Marazopoulou, Hüseyin Oktay, Matt Rattigan, and Brian Taylor. Thank

you as well to the research and technical staff: Dan Corkill, Matt Cornell, and Cindy Loiselle.

I greatly appreciate the efforts made by the three music theorists who evaluated the

analyses produced by the algorithms described in this work. While I cannot thank them by

name, they know who they are.

My life has been greatly influenced by a number of phenomenal teachers. Thank you to

Gerry Berry and Jeff Leaf for giving me my start in computer science and technology, to

Richard Layton for introducing me to music theory, and to Laura Edelbrock, for reminding

me of the importance of music in my life.

Finally, I would like to thank my parents, George and Sheila, for putting up with thirty-

one years of me, especially because the last ten were probably much more difficult than

the first twenty-one. Their confidence in me never wavered, even when I thought I had

hit bottom, and completing this dissertation would not have been possible without their

constant encouragement and unconditional love.

vi

ABSTRACT

A PROBABILISTIC MODEL OF HIERARCHICAL MUSIC
ANALYSIS

FEBRUARY 2014

PHILLIP B. KIRLIN

B.S., UNIVERSITY OF MARYLAND

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David Jensen

Schenkerian music theory supposes that Western tonal compositions can be viewed as

hierarchies of musical objects. The process of Schenkerian analysis reveals this hierarchy by

identifying connections between notes or chords of a composition that illustrate both the

small- and large-scale construction of the music. We present a new probabilistic model of

this variety of music analysis, details of how the parameters of the model can be learned

from a corpus, an algorithm for deriving the most probable analysis for a given piece of

music, and both quantitative and human-based evaluations of the algorithm’s performance.

In addition, we describe the creation of the corpus, the first publicly available data set to

contain both musical excerpts and corresponding computer-readable Schenkerian analyses.

Combining this corpus with the probabilistic model gives us the first completely data-driven

computational approach to hierarchical music analysis.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .v

ABSTRACT . vii

LIST OF TABLES .x

LIST OF FIGURES . xi

CHAPTER

INTRODUCTION .1

1. MOTIVATION .4

1.1 Types of music analysis . 5
1.2 Schenkerian analysis . 6
1.3 Computational music . 9
1.4 Evaluation of analyses . 11

2. PRIOR WORK . 13

2.1 Computational issues in Schenkerian analysis . 13
2.2 Previous approaches . 16

3. THE MOP REPRESENTATION . 21

3.1 Data structures for prolongations . 21
3.2 MOPs and search space size . 28
3.3 Algorithms for MOPs . 29

3.3.1 Creating a MOP uniformly at random . 30
3.3.2 Enumerating all MOPs . 34

viii

4. THE CORPUS . 37

4.1 Creation of a corpus . 37
4.2 Encoding the corpus . 40
4.3 The feasibility of analysis . 41

5. A JOINT PROBABILITY MODEL FOR MUSICAL
STRUCTURES . 47

5.1 A probabilistic interpretation of MOPs . 47
5.2 Estimating triangle frequencies . 52

6. ALGORITHMS FOR MUSIC ANALYSIS . 58

6.1 A probabilistic grammar approach . 58
6.2 The ParseMOP algorithm . 62

7. EVALUATION . 69

7.1 Evaluation metrics . 70
7.2 ParseMOP accuracy . 72
7.3 Error locations . 78
7.4 Maximum accuracy as a function of rank . 84
7.5 Human-based evaluation . 85

8. SUMMARY AND FUTURE WORK . 95

APPENDICES

A. MUSICAL EXCERPTS AND MOPS . 98
B. MAXIMUM ACCURACY AS A FUNCTION OF RANK 197

BIBLIOGRAPHY . 204

ix

LIST OF TABLES

Table Page

4.1 The music excerpts in the corpus. 39

4.2 The four triangle types whose differences in observed and expected
frequency were statistically significant and appear more frequently than
would be expected under the null hypothesis. 44

4.3 The seven triangle types whose differences in observed and expected
frequency were statistically significant and appear less frequently than
would be expected under the null hypothesis. 44

6.1 The probability distributions used in the ParseMop example. 64

7.1 Edge accuracy improvement over random and error locations for each
excerpt. 81

x

LIST OF FIGURES

Figure Page

1.1 The three types of Ursatz. 8

3.1 An arpeggiation of a G-major chord with passing tones. 22

3.2 The prolongational hierarchy of a G-major chord with passing tones
represented as a tree of melodic intervals. 23

3.3 The prolongational hierarchy of a G-major chord with passing tones
represented as a tree of notes. 24

3.4 The prolongational hierarchy using internal labels. 24

3.5 The prolongational hierarchy represented as a maximal outerplanar
graph. 25

3.6 A MOP containing initiation and termination events. 27

3.7 The decisions inherent in creation a MOP uniformly at random. 31

3.8 The steps in triangulating a hexagon according to a certain configuration. 35

5.1 A visual depiction of the reranking procedure used to judge the
appropriateness of the independence assumption. 50

5.2 Heatmaps of the ranking correlation coefficients. 53

6.1 A parse tree for the phrase “John hit the ball.” . 59

6.2 An arpeggiation of a G-major chord with passing tones. 61

6.3 The prolongational hierarchy of a G-major chord. 61

6.4 The prolongational hierarchy represented as a MOP. 61

xi

6.5 The dynamic programming formulation used by ParseMop. 63

6.6 An example five-note sequence used as an example for ParseMop. 63

6.7 The complete table of partial MOP probabilities computed by ParseMop
during the example. 65

6.8 The five MOPs possible for the musical sequence B–C–B–A–G and their
corresponding probabilities. 66

7.1 Two MOPs that share an interior edge but have no triangles in common. 71

7.2 Triangle accuracy for the three ParseMop variants. 74

7.3 Edge accuracy for the three ParseMop variants. 75

7.4 An arpeggiation of a G-major chord, now interpreted as an Urlinie. 76

7.5 Excerpt of Mozart, KV 103, No. 1, Trio (mozart17), along with the textbook
and ParseMop-C analyses of the first four measures. 79

7.6 Histogram showing the locations of errors for the three ParseMop variants
over all excerpts in the corpus. 80

7.7 Maximum accuracy as a function of rank. 86

7.8 Excerpt of Mozart, K. 265, Variations on Twinkle, Twinkle Little Star
(mozart8). 87

7.9 Textbook analysis of Mozart, K. 265 (mozart8). 87

7.10 ParseMop-C analysis of Mozart, K. 265 (mozart8). 87

7.11 The directions provided to the human graders for judging pairs of
analyses. 89

7.12 Grades assigned by human judges to the textbook analyses and
algorithmically-produced analyses from ParseMop-C. 90

7.13 Excerpt of Mozart, Piano Sonata #7 in C major, K309, I (mozart5) 91

7.14 Textbook analysis of mozart5. 91

xii

7.15 ParseMop-C analysis of mozart5. 92

7.16 Contingency tables for the human evaluations. 93

xiii

INTRODUCTION

An adage often repeated among music theorists is that “theory follows practice” (Godt,

1984). This statement implies that music theory is reactive, rather than proactive: the

goal of music theory is to explain the music that composers write, in an attempt to make

generalizations about compositional practices.

Schenkerian analysis is a widely-used theory of music which posits that compositions are

structured as hierarchies of musical events, such as notes or intervals, with the surface level

music at the lowest level of the hierarchy and an abstract structure representing the entire

composition at the highest level. This type of analysis is used to reveal deep structure in the

music and illustrate the relationships between various notes or chords at multiple levels of

the hierarchy.

For more than forty years, researchers have attempted to construct computational sys-

tems that perform automated or semi-automated analysis of musical structure (Winograd,

1968; Kassler, 1975; Frankel et al., 1978; Meehan, 1980; Lerdahl and Jackendoff, 1983). Un-

fortunately, early computational models that used traditional symbolic artificial intelligence

methods often lead to initially-promising systems that fell short in the long run; such systems

could not replicate human-level performance in analyzing music. More recent models, such as

those that take advantage of new representational techniques (Mavromatis and Brown, 2004;

Marsden, 2010) or machine learning algorithms (Gilbert and Conklin, 2007) are promising

but still rely on a hand-created set of rules. In contrast, the work presented here repre-

sents the first purely data-driven approach to modeling hierarchical music analysis, in that

1

all of the “rules” of analysis, including how, when, and where to apply them, are learned

algorithmically from a corpus of musical excerpts and corresponding music analyses.

Our approach begins with representing a hierarchical music analysis as a maximal out-

erplanar graph, or MOP (Chapter 3). Yust (2006) first proposed the MOP data structure

as an elegant method for storing multiple levels of linear voice-leading connections between

the notes of a composition. We illustrate how this representation reduces the size of the

search space of possible analyses, and also leads to efficient algorithms for selecting analyses

at random and iterating through all possible analyses for a given piece of music.

The corpus constructed for this research contains 41 musical excerpts written by eight

different composers during the Baroque, Classical, and Romantic periods of European art

music. What makes this corpus unique is that it also contains the corresponding Schenkerian

analyses of the excerpts in a computer-interpretable format; no publicly available corpora

of such analyses has been created before. We use this corpus to demonstrate statistically

significant regularities in the way that people perform Schenkerian analysis (Chapter 4).

We next augment the MOP representation with a probabilistic interpretation to introduce

a method for determining whether one MOP analysis is more likely than another, and we

verify that this new model preserves potential rankings of analyses even under a probabilistic

independence assumption (Chapter 5). We use this model to derive an algorithm that

efficiently determines the most probable MOP analysis for a given piece of music (Chapter

6). Finally, we evaluate the model by examining the performance of the analysis algorithm

using standard comparison metrics, and also by asking three experienced music theorists to

compare algorithmically-produced analyses against the ground-truth analyses in our corpus

(Chapter 7).

The key contributions of the work presented here are: (1) a new probabilistic model of hi-

erarchical music analysis, along with evidence for its utility in ranking analyses appropriately,

and an algorithm it admits for finding the most likely analysis of a given composition; (2)

2

a corpus, the first of its kind to contain not only musical excerpts, but computer-readable

Schenkerian analyses that can be used for supervised machine learning; and (3) a study

comparing human- and algorithmically-produced analyses that quantitatively estimates how

much further computational models of Schenkerian analysis need to progress to rival human

performance.

3

CHAPTER 1

MOTIVATION

Music analysis is largely concerned with the study of musical structures: identifying

them, relating them to each other, and examining how they work together to form larger

structures. Analysts apply various techniques to discover how the building blocks of music,

such as notes, chords, phrases, or larger components, function in relation to each other and

the whole composition (Bent and Pople, 2013).

People are interested in music analysis for the same reason people are interested in an-

alyzing literature, film, or other creative works: because we are fascinated by how a single

work — be it a book, painting, or musical composition — can be composed of individual

pieces; that is, words, brush strokes, or notes; and yet be larger than the sum of those pieces.

In analyzing music, we want to dive inside a work of music and deconstruct it, examine it,

explore every nook and cranny of the notes until we can discover what makes it sound the

way it does. We want to know why this certain combination of notes, and not some other

combination, made the most sense at the time to the composer. Music analysis is closely

related to music theory, “the study of the structure of music” (Palisca and Bent, 2013).

Both of these topics are a standard part of the undergraduate music curriculum because a

knowledge of theory helps “students to develop critical thinking skills unique to the study

of music” (Kang, 2006).

4

1.1 Types of music analysis

The basic structures of music that analysts and theorists study are “melody, rhythm,

counterpoint, harmony, and form, but these elements are difficult to distinguish from each

other and to separate from their contexts” (Palisca and Bent, 2013). In other words, the

varying facets of a musical composition are difficult to study in isolation, especially at a

more than basic level of understanding. Nevertheless, we will try to give an overview of the

characteristics of these facets.

The two primary axes one observes in a musical score are the horizontal and the vertical;

that is, the way notes relate to each other over a period of time (the horizontal axis), and

the way notes relate to each other in pitch (the vertical axis) (Merritt, 2000). These two

elements are commonly referred to as harmony, “the combining of notes simultaneously, to

produce chords, and successively, to produce chord progressions” (Dahlhaus et al., 2013), and

voice-leading or counterpoint, the combining of notes sequentially to create a melodic line

or voice, and the techniques of combining multiple voices in a harmonious fashion (Drabkin,

2013). Usually, harmony and voice-leading are the first two aspects of music that one begins

studying in a first college-level course in music theory, and both involve finding and iden-

tifying relationships among groups of notes. These topics evolved organically over time as

composers adopted new techniques. As we have already noted, “theory follows practice,”

and harmony and voice-leading are no exceptions.

Harmony in music arises when notes either sound together temporally or the illusion of

such a sonority is obtained through other compositional techniques. Analyzing the harmonic

content of a piece involves explaining how these combinations of notes fall into certain es-

tablished patterns (or identifying the lack of any matching pattern) and how these patterns

work together to drive the music forward. Music theory novices often first see harmony in

the context of chord labeling, where students are taught to write Roman numerals in the

musical score to label the harmonic function of the chords. The principles of harmony, how-

5

ever, run much deeper than just the surface of the music (which is all that chord labeling

examines); modern views of harmony seek to identify the purpose or function of a harmony

not by solely examining the notes of which the harmony is comprised, but rather relating it

to surrounding harmonies.

At the same time students are taught to label chords, they are often taught the introduc-

tory principles of counterpoint and voice-leading, or how to create musical lines that not only

sound pleasing to the ear by themselves, but also blend harmoniously when played simulta-

neously. It is because of the two-dimensional nature of music that harmony and voice-leading

cannot be studied separately. Particular sequences or combinations of harmonies can arise

because of appropriate use of voice-leading and contrapuntal techniques, whereas choosing

a harmonic structure for a composition will often dictate using certain voice-leading idioms.

Rhythm is an aspect of music that is not given as much time in introductory classes

as harmony and voice-leading, though it still contributes greatly to the overall sound of a

musical work. Many of the fundamental issues in rhythm are glossed over in formal music

analysis precisely because anyone somewhat familiar with a given musical genre can often

identify the rhythmic structure of a composition just by listening; for instance, most people

can clap along to the beat of a song that they hear. Analyzing rhythm involves studying the

temporal patterns in a musical composition independently of the pitches of the notes being

played. For instance, certain genres are associated with certain rhythmic structures, such as

syncopation in ragtime and jazz.

1.2 Schenkerian analysis

Schenkerian analysis is one of the most comprehensive methods for music analysis that we

have available today (Brown, 2005; Whittall, 2013). Developed over a period of forty years by

the music theorist Heinrich Schenker (1868–1935), Schenkerian analysis has been described as

“revolutionary” (Salzer, 1952) and “the lingua franca of tonal theory in the Anglo-American

6

academy” (Rings, 2011); many of its “principles and ways of thinking . . . have become an

integral part of the musical discourse” (Cadwallader and Gagné, 1998). Furthermore, a

study of all articles published in the Journal of Music Theory from its inception in 1957 to

2004 revealed that Schenkerian analysis is the most common analytical method discussed

(Goldenberg, 2006).

Schenkerian analysis introduced the idea that musical compositions have a deep structure.

Schenker posited that an implicit hierarchy of musical objects is embedded in a composi-

tion, an idea that has come to be known as structural levels. The hierarchy illustrates how

surface-level musical objects can be related to a more abstract background musical structure

that governs the entire work. Schenkerian analysis is the process of uncovering the specific

hierarchy for a given composition and illustrating how each note functions in relation to

notes above and below it in the hierarchy.

Crudely, the analysis procedure begins from a musical score and proceeds in a reductive

manner, eliminating notes at each successive level of the hierarchy until a fundamental

background structure is reached. At a given level, the notes that are preserved to the next

highest-level are said to be more structural than the notes not retained. More structural

notes play larger roles in the overall organization of a composition, though these notes are

not necessarily more memorable aurally.

Viewed from the top down, the hierarchy consists of a collection of prolongations : “each

subsequent level of the hierarchy expands, or prolongs, the content of the previous level”

(Forte, 1959). The reductive process hinges on identifying these individual prolongations:

situations where a group of notes is elaborating a more “fundamental” group of notes. An

example of this idea is when a musician decorates a note with a trill: the score shows a single

note, but the musician substitutes a sequence of notes that alternate between two pitches.

A Schenkerian would say that the played sequence of notes prolongs the single written note

7

in the score. Schenkerian analysis takes this concept to the extreme, hypothesizing that a

composition is constructed from a nested collection of these prolongations.

It is critical to observe that the goal of this method of analysis is not the reductive process

per se, but rather the identification and justification for which prolongations are identified

in a composition. This is because the music frequently presents situations which could be

analyzed in multiple ways, and the analyst must decide what sort of prolongation makes the

most musical sense.

The analyses that Schenker provided to explain his method always reduced a composition

to one of three specific musical patterns at the most abstract level of the musical hierarchy.

Each pattern consisted of a simple descending melodic line, called the Urlinie or fundamental

line, and an accompanying harmonic progression expressed through a bass arpeggiation, or

Bassbrechung. Together, these components form the Ursatz, or fundamental structure. Fur-

thermore, Schenker hypothesized that because of the way listeners perceive music centered

around a given pitch (i.e., tonal music), every tonal composition should be reducible to one

of the three possible fundamental structures shown in Figure 1.1. This idea has proved much

more controversial than that of structural levels.

5
�Õ

V

�

 ^
 2

�

C: I

�

 ^
 3

�

I

�

 ^
 1

�

Z

 ^
 1

Z
I

Õ �� Z

 ^
 4

Z
 ^
 5

Z
IC:

 ^
 3

Z

 ^
 2

Z

V

Z

 ^
 1

ZZ

 ^
 2

Z

V

Õ
Z
I

�
�

ZZ
 ^
 8

Z
IC:

 ^
 6

Z
 ^
 7

Z

 ^
 4

Z

 ^
 3

Z
 ^
 5

Figure 1.1: The three types of Ursatz.

Possibly the most frustrating aspect of Schenkerian analysis is that Schenker himself did

not explain specifically how his method works. The “rules” for the reductive analysis proce-

dure are derived from how listeners perceive music (specifically, Western tonal music), but

8

Schenker did not explicitly state them. Instead, the process is illustrated through numerous

examples of analyses completed by Schenker in his works Der Tonwille (1921) and Der Freie

Satz (1935). Forte (1959) argues that “the important deficiencies in [Schenkerian analysis]

arise from his failure to define with sufficient rigor the conditions under which particular

structural events occur.”

While modern textbooks do try to give guidelines for how to execute an analysis, (e.g.,

Forte and Gilbert (1982a); Cadwallader and Gagné (1998); Pankhurst (2008)), they still often

resort to illustrating the application of a prolongational technique by showing an analysis

that uses it and then giving exercises for the student to practice applying it. Textbooks are

almost useless for learning the analysis procedure without a teacher to lead a class through

the book, assign exercises, and provide feedback to the students on their individual work.

1.3 Computational music

Introducing a computational aspect into musical endeavors is not new. In 18th century

Europe, the Musikalisches Würfelspiel or “musical dice game” was a popular pastime in

which people would use randomly-generated numbers to recombine pre-composed sections

of music to generate new compositions. As electronic computers became commonplace in

academia and government during the 20th century, people began to experiment with musical

applications: two professors at the University of Illinois at Urbana-Champaign created a

program that composed the Iliac Suite in 1956, the first piece of music written by computer.

The reasons why numerous people have chosen to study music through the lens of com-

puter science are twofold. First, the problems are intellectually stimulating for their own

sake, and both fields have paradigms that are readily adaptable to being combined with ideas

from the other field. It is precisely this inherent adaptability that leads us to the second

reason, namely that this interdisciplinary endeavor can lead to a wealth of new discoveries,

knowledge, and useful applications in each of the parent fields of computer science and music.

9

Cook (2005) draws parallels between the recent research interests in studying music using

computational methods and the interest in the 1980s of studying music from a psycholog-

ical standpoint, stating that music naturally lends itself to scientific study because it is a

“complex, culturally embedded activity that is open to quantitative analysis.” Music can be

quantified and digitized in various ways; the two main representations of music — the score

and the aural performance — both can now be easily rendered in many varied computer-

interpretable formats (Dannenberg, 1993). However, researchers acknowledge the “divide”

that still exists in this interdisciplinary field, in that the music community has “not yet

taken up the tools offered by mathematics and computation,” (Volk and Honingh, 2012).

One argument for the lack of enthusiasm on the music side is the susceptibility of scientific

researchers to create and study tools for their own sake, without relating the use of such

tools and studies back to concrete musicological problems (Cook, 2005; Marsden, 2009).

Additionally, some music scholars claim that “scientific methods may work to explain the

physical world, [but] they cannot apply properly to music” (Brown and Dempster, 1989).

Historically, each domain of knowledge that computer science has approached has pro-

duced not only solutions to problems in that domain, but computational artifacts (such as

algorithms or models) that are useful in other situations. For instance, speech recognition

using hidden Markov models spurred future studies of such models, which can now be found

in many other artificial intelligence domains. The sequence-alignment techniques refined by

bioinformatics researchers have found other uses in the social sciences (Abbott and Tsay,

2000). Because music is a complex, multi-dimensional, human-created artifact, it is probable

that research successes in computational musicology will be useful in other areas of computer

science, for instance, in modeling similar complex phenomena or human creativity.

Computational methods also have great potential for advancing our knowledge and un-

derstanding of music. Traditionally, music research has proceeded with both limited repre-

sentations of music (i.e., scores, which abstract away the nuances of individual performances),

10

and small data sets (in many cases, single compositions for a study) (Cook, 2005). The raw

processing capabilities of modern computers now permit us to use many more dimensions

of music in studies (e.g., actual tempos of performances) and larger data sets. Additionally,

approaching music from a scientific standpoint brings a certain empiricism to the domain

which previously was difficult or impossible due to innate human biases (Volk et al., 2011;

Marsden, 2009). Computational methods already have contributed numerous digital repre-

sentations of music, formal models of musical phenomena, and ground-truth data sets, and

will continue to do so.

If we restrict ourselves to discussing computational techniques as applied to music the-

ory and analysis, we encounter a wealth of potential “real world” applications outside of

the scholar’s ivory tower. Algorithms for and models of music analysis have applications in

intelligent tutoring systems for teaching composition and analysis, notation or other music-

creation software, and even algorithmic music composition. Music recommendation systems

that use metrics for music similarity, such as Pandora or the iTunes Genius, could bene-

fit from automated analysis procedures, as could systems for new music discovery such as

last.fm. Models for music analysis could potentially have uses in predicting new hit songs or

even in legal situations for discovering potential instances of musical plagiarism.

1.4 Evaluation of analyses

Historically, evaluation has been difficult for computational models of music analysis

due to the lack of easily obtainable ground-truth data. This goes doubly for any model

of Schenkerian analysis, because not only are there no computer-interpretable databases of

Schenkerian analyses, but because Schenker declined to give any methodical description of his

procedure, and therefore everyone does Schenkerian analysis slightly differently. As a result,

the primary criteria for evaluating an analysis — produced by a human or computer — is

the defensibility of the prolongations found and the resulting structural hierarchy produced,

11

in that there should be musical evidence for why certain prolongations were identified and

not others. Because the idea of “musical evidence” itself is maddeningly vague, there can

be multiple possible “correct” analyses for a single composition when the music in question

presents a conflicting situation. This happens frequently; experts do not always agree on the

“correct” Schenkerian interpretation of a composition.

In a perfect world, in order to evaluate the quality of an algorithmic analysis system,

one would have an exhaustive collection of correct analyses for each composition the system

could ever analyze. This is, of course, infeasible. Therefore, for this study, we will adopt

the convention of having a single ground-truth analysis for each input composition, and all

algorithmically-produced analyses will be compared to the corresponding gold standard.

Naturally, some difficulties arise from this concession. A system that produces an output

analysis that matches the ground-truth analysis is certainly good, but output that differs

from the ground-truth is not necessarily bad. “Errors” can vary in magnitude: two analyses

may differ in a surface-level prolongation that has no bearing on the background musical

structure, or the analyses may identify vastly-different high-level abstractions of the same

music. However, larger-magnitude differences between the ground-truth and the algorithmic

output still do not necessarily mean the system-produced analysis is wrong ; it could be a

musically-defensible alternate way of analyzing the composition in question. While we are

not trying to say that quantitative evaluation of Schenkerian analyses is impossible, it must

be done carefully to avoid penalizing musically-plausible analyses that happen to differ from

the analysis selected as the gold standard.

Evaluation is not the only issue in Schenkerian analysis that presents computational is-

sues, however. In the next chapter, we will examine prior work in computational hierarchical

analysis and see how others have tackled such issues.

12

CHAPTER 2

PRIOR WORK

2.1 Computational issues in Schenkerian analysis

Recall that the goal of Schenkerian analysis is to describe a musical composition as a series

of increasingly-abstract hierarchical levels. Each level consists of prolongations : situations

where an analyst has identified a set of notes S that is an elaboration of a more fundamental

musical structure S ′ (usually a subset of S). A prolongation expresses the idea that the more

abstract structure S ′ maintains musical control over the entire time span of S even though

there may be additional notes during the time span that are not a part of S ′.

In this chapter, we discuss the computational issues that arise in developing models

and algorithms for Schenkerian analysis, along with previous lines of research and how they

addressed these issues. Though researchers have been using computational methods to study

Schenkerian analysis for over forty years, a number of challenges arise in nearly all studies, the

primary one being the lack of a definitive, unambiguous set of rules for the analysis procedure.

Lack of a unified ruleset leads to additional issues such as having multiple analyses possible

for a single piece of music, determining whether the analysis procedure itself is done in a

consistent manner among different people, and computational studies using ad hoc rules

derived from guidelines in textbooks rather than learning such rules methodically from data.

There are additional challenges as well. First, while most models of Schenkerian analysis

use a tree-based hierarchy, there are disagreements over which type of tree best represents

a set of prolongations. Second, lack of an established representation wreaks havoc when it

comes to evaluation metrics. In many studies, the analyses produced algorithmically are

13

presented without any comparison to reference analyses simply because it is time consuming

to turn human-produced analyses into machine-readable ones. Furthermore, representational

choices sometimes make it difficult for a model of analysis to quantify how much better

one candidate analysis is over another. Lastly, the time involved in producing a corpus of

analyses in a machine-readable format has prevented any large-scale attempts at supervised

learning for Schenkerian analysis; most previous automated learning attempts have been

unsupervised. A supervised learning algorithm for Schenkerian analysis would require a

corpus containing pieces of music and corresponding machine-readable analyses for each

piece; an unsupervised algorithm would require only the music. Due to the time-intensive

nature of encoding analyses for processing via computer, the lone supervised attempt at

Schenkerian analysis used a corpus of only six pieces of music and analyses (Marsden, 2010).

Furthermore, the author conceded the evaluation of the computational model used in the

study was not rigorous.

The “rules” of Schenkerian analysis

The primary challenge in computational Schenkerian analysis is the lack of a consistent

set of rules for the procedure, leading to multiple musically-plausible analyses for a single

piece of music. To most music theorists, however, this is not a problem. John Rahn argues

that music theory is not about the search for truth, but rather the search for explanation

and that the value in such theories of music is not derived from separating music into classes

of “true” and “false” determined by a set of rules, but in the explanations that the theory

offers as to how specific musical compositions are constructed (Rahn, 1980).

Experts sometimes disagree on what the “correct” Schenkerian analysis is for a compo-

sition. This issue arises precisely because Schenkerian analysis is concerned with explaining

music rather than proving it has certain properties, coupled with the fact that Schenker

himself did not offer any sort of algorithm for the analysis procedure. However, this is not a

14

reason for despair, but rather an opportunity to refine the goals of computational Schenke-

rian analysis. Above, we mentioned how Schenkerian theory offers explanations (in the form

of analyses) for how a composition works. Though multiple explanations are usually possible

for any non-trivial piece of music, again, analysts endeavor to choose the “most musically

satisfying description among the alternatives” (Rahn, 1980). Therefore, because any tonal

musical composition can be analyzed from a Schenkerian standpoint (Brown, 2005), any

useful computational model of Schenkerian analysis must have the ability to compare anal-

yses to determine which one is a more musically satisfying interpretation of how the piece is

constructed.

Modeling analysis

People often speak of “formalizing” Schenkerian analysis, but this term can mean dif-

ferent things to different researchers. To some, it means an attempt to formalize only the

representation of an analysis (that is, devising appropriate computational abstractions for

the input music, the prolongations available to act upon the music, and how they do so)

without specifying any sort of algorithm for performing the analysis itself (e.g., by selecting

a set of prolongations). Regardless of the presence or absence of an algorithm, a compu-

tational model of the prolongational hierarchy is necessary. Because Schenkerian analysis

uses a rich symbolic language for expressing the musical intuitions of a listener or analyst

(Yust, 2006), any attempt to formalize this language will usually restrict it in some way

in order to make the resultant product more manageable. Therefore, we will occasionally

refer to “hierarchical analysis” or “Schenkerian-like analysis” in order to distinguish the full,

informal version of Schenkerian analysis and the formalized subset under study.

Schenkerian analysis operates in multiple dimensions simultaneously, most importantly

along the melodic (temporal) and harmonic (pitch-based) axes. Full-fledged analyses take all

the notes present in the score into account during the analysis process, due to the inextricably

15

linked nature of melody and harmony, but some studies choose to modify the input music in

some fashion. This can simplify the prolongational model, and it usually reduces the size of

the search space for any algorithms which use the model. A common simplification involves

collapsing the polyphonic (multiple voice) musical into one of a few types of monophonic

(single voice) input. Thus the prolongational model must only handle prolongations that

occur in the “main melody” of the music and can represent the harmony of the composition

as chords that occur simultaneously with the notes of the main melody (whether or not they

are simultaneous in the original music).

An appropriate representation for the input music, therefore, goes hand-in-hand with an

appropriate model for the prolongational hierarchy. Though full Schenkerian analysis in-

cludes other notations besides prolongations, most computational models prioritize effective

methods for representing the prolongational hierarchy. Because this hierarchy is fundamen-

tally recursive, most studies choose a recursively-structured model, most commonly a set

of rules for prolongations that may be applied recursively, coupled with with a tree-based

structure to store the prolongations in the hierarchy.

In the rest of this chapter, we discuss these computational issues in the context of other

researchers’ explorations of modeling Schenkerian analysis.

2.2 Previous approaches

The first piece of research in relating Schenkerian analysis to computing was the work

of Michael Kassler, which began with his PhD dissertation in 1967, in which he developed

a set of formal rules that govern the prolongations that operate from the middleground to

the background levels in Schenkerian analysis. In other words, these rules operated on mu-

sic that had already been reduced from the musical surface (what one sees in the score)

to a two- or three-voice intermediary structure. Kassler went on to develop an algorithm

16

that could derive Schenker-style hierarchical analyses from these middleground structures

(Kassler, 1975, 1987). Kassler compared a Schenkerian analysis to a mathematical proof,

in that both are attempts to show how a structure (musical or mathematical) can be de-

rived from a finite set of axioms (the Ursatz in Schenker) according to rules of inference

(prolongations in Schenker). Kassler handled the issue of multiple possible analyses of a

single composition by orchestrating his rules such that only a single “minimal” music anal-

ysis (modulo the order of the rules being applied) would be possible for each middleground

structure with which his program worked.

In a similar vein to Kassler, the team of Frankel, Rosenschein, and Smoliar created a set of

rules for Schenkerian-style prolongations that operated from the musical foreground, rather

than from the middleground. These rules were expressed as LISP functions, and similarly

to Kassler, were initially produced to allow for “verification” of the “well-formedness” of

musical compositions. The authors were initially optimistic about extending the system “in

service of a computerized parsing (i.e., analysis) of a composition” (Frankel et al., 1976).

Later work, however, was not successful in doing so, and their last publication presented

their system solely as an “aid” to the human analyst (Frankel et al., 1978; Smoliar, 1980).

The natural parallels between music and natural language, coupled with the recursive

nature of Schenkerian analysis, led a number of researchers to explicitly study formalization

of hierarchical analysis from the perspective of linguistics and formal grammars. The most

well-known piece of work in this area is Lerdahl and Jackendoff’s A Generative Theory of

Tonal Music (1983), in which the authors describe two different formal reductional systems

— time-span reductions and prolongational reductions — along with general guidelines for

conducting each type of reductive process. However, they acknowledged that their “theory

cannot provide a computable procedure for determining musical analyses,” namely because

while their reductional systems do include “preference rules” that come into play when

encountering ambiguities during analysis, the rules are not specified with sufficient rigor

17

(e.g., with numerical weights) to turn into an algorithm. Nevertheless, researchers have

made attempts at replicating the analytical procedures in Lerdahl and Jackendoff’s work;

the most successful being the endeavors of Hamanaka, Hirata, and Tojo (2005; 2006; 2007),

which required user-supplied parameters to facilitate finding the “correct” analysis. Their

later work (2009) focused on automating the parameter search, but results never produced

analyses comparable to those done by humans.

Following in the footsteps of Lerdahl and Jackendoff, a number of projects appeared

using formal grammars or similar techniques. Mavromatis and Brown (2004) explored using

a context-free grammar for “parsing” music, and therefore producing a Schenkerian-style

analysis via the parse tree. This initially promising work, however, again ran into difficulties

later on because “the number of re-write rules required is preventatively large” (Marsden,

2010). However, the authors proposed a number of important guidelines for using grammars

for Schenkerian analysis, one of the most important being that using melodic intervals (pairs

of notes) rather than individual notes as terminal symbols in the grammar allows for a small

amount of context hidden within the context-free grammar.

Other researchers also found great utility in using intervals rather than notes as gram-

matical atoms. Gilbert and Conklin (2007) used this technique to create the first probabilis-

tic context-free grammar for hierarchical analysis, though their system was not explicitly

Schenkerian because it did not attempt to reduce music to an Ursatz. Their system used

a set of hand-created rules corresponding to Schenker-style prolongations and used unsu-

pervised learning to train the system to give high probabilities to the compositions in their

initial corpus: 1,350 melodic phrases chosen from Bach chorales. Analyses were computed

using a “polynomial-time algorithm” (most likely the CYK algorithm, which runs in cubic

time).

Marsden (2005b, 2007, 2010) also used a data structure built on prolongations of inter-

vals rather than notes to model a hierarchical analysis. Like Gilbert and Conklin, Marsden’s

18

model used a set of hand-specified rules corresponding to various types of prolongations com-

monly found in Schenkerian analysis. Marsden combined this model with a set of heuristics

to create a chart-parser algorithm that runs in O(n3) time to find candidate analyses. Find-

ing this space of possible analyses still prohibitively large, Marsden used a small corpus of

six themes and corresponding analyses from Mozart piano sonatas to derive a feature-based

“goodness metric” using linear regression to score candidate analyses. After revising the

chart parser to rank analyses based on this metric, he evaluated the algorithm on the six

examples in the corpus. The results (accuracy levels for the top-ranked analysis varying from

79% to 98%), were biased, however, because the goodness metric used in the evaluation was

trained on the entire corpus at once. With identical training and testing sets, it is unclear

how well this model would generalize to new data. Furthermore, the corpus of analyses con-

tained information about the notes present in each structural level in the musical hierarchy,

but no information about how the notes in each level were related to notes in surrounding

levels. That is, there was no explicit information about individual prolongations in the cor-

pus. Without this additional information, such a corpus would be difficult to use to deduce

the rules of Schenkerian analysis from the ground up.

In all of the approaches discussed above, the major stumbling block was the set of rules

used for analysis: all of the projects used a set of rules created by hand. Furthermore,

out of all the studies, only three algorithms were produced. Two of these algorithms were

only made possible by sacrificing some accuracy for feasibility: Kassler’s worked from the

middleground rather than the foreground, while Gilbert and Conklin’s was trained through

unsupervised learning and could not produce analyses with an Urlinie; the true performance

of Marsden’s algorithm is unclear.

In the remainder of this dissertation, we present the first probabilistic corpus-based ex-

ploration of modeling hierarchical music analysis. This approach uses a probabilistic context-

19

free grammar, but is capable of reducing music to an Urlinie unlike Gilbert and Conklin.

It uses a large corpus to allow for a non-biased evaluation, unlike Marsden, and works from

the foreground, unlike Kassler.

20

CHAPTER 3

THE MOP REPRESENTATION

In Chapter 1, we discussed Schenkerian analysis and its central tenet: the idea that a

tonal composition is structured as a series of hierarchical levels. During the analysis process,

structural levels are uncovered by identifying prolongations, situations where a musical event

(a note, chord, or harmony) remains in control of a musical passage even when the event is

not physically sounding during the entire passage. In Chapter 2, we discussed the various

methods researchers have used for storing the collection of prolongations found in an analysis,

as well as techniques for modeling the algorithmic process of analysis itself. In this chapter,

we will present the data structure that we use to model the prolongational hierarchy, along

with some algorithms for manipulating the model.

3.1 Data structures for prolongations

Though the concept of prolongation is crucial to Schenker’s work, he neglected to give a

precise meaning for how he was using the idea. In fact, not only did Schenker’s interpretation

of prolongation change over time, modern theorists use the term inconsistently themselves.

Nevertheless, modern meanings can be divided into two categories (Yust, 2006). First, the

term can refer to a static prolongation, where “the musical events themselves are the subjects

and objects of prolongation.” Second, some authors refer to a dynamic prolongation, where

the “motion between tonal events [is] prolonged by motions to other tonal events.” The key

word in the second definition is “motion,” in that the objects of prolongation in the dynamic

sense are not notes, but the spaces between notes: melodic intervals. Interestingly, these two

21

categories align nicely with the two groups of data structures discussed in Chapter 2: those

that represent prolongations as hierarchies of notes (static), and those that use hierarchies

of intervals (dynamic).

These two conceptualizations of prolongation can be made clearer with an example.

Suppose a musical composition contains the five-note melodic sequence shown in Figure 3.1,

a descending sequence from D down to G. Assume that an analyst interprets this passage

as an outline of a G-major chord, and the analyst wishes to express the fact that the first,

third, and fifth notes of the sequence (D, B, and G) are more structurally important in the

music than the second and fourth notes (C and A). In this situation, the analyst would

interpret the C and A as passing tones : notes that serve to transition smoothly between the

preceding and following notes by filling in the space in between. From a Schenkerian aspect,

we would say that there are two dynamic prolongations at work here: the motion from D to

B is prolonged by the motion from the D to the intermediate note C, and then from the C

to the B. The motion from the B to the G is prolonged in a similar fashion.

!"# !! !!!
D C B A G

Figure 3.1: An arpeggiation of a G-major chord with passing tones. The slurs are a Schenke-
rian notation used to indicate the locations of prolongations.

However, there is another level of prolongation at work in the hierarchy here. Because

the two critical notes that aurally determine a G chord are the G itself and the D a fifth

above, a Schenkerian would say that the entire melodic span from D to G is being prolonged

by the arpeggiation obtained by adding the B in the middle. More formally, the span from

G to D is prolonged by the motion from D to B, and then from B to G. Therefore, the entire

intervallic hierarchy can be represented by the tree structure shown in Figure 3.2. Note that

22

the labels on the internal nodes are superfluous; they can be determined automatically from

each internal node’s children.

Though the subjects and objects of dynamic prolongation are always melodic intervals

(time spans from one note to another), it is not uncommon to shorten the rather verbose

“motion”-centric language used to describe a prolongation. For instance, in the passing

tone figure D–C–B mentioned above, we could rephrase the description of the underlying

prolongation by saying the note C prolongs the motion from D to B. While this muddies the

prolongational waters — it is the motion to and from the C that does the prolonging, not

the note itself — the intent of the phrase is still clear.

D–G
D–B B–G

D–C C–B B–A A–G

Figure 3.2: The prolongational hierarchy of a G-major chord with passing tones represented
as a tree of melodic intervals.

Now let us examine the same five-note sequence using the static sense of prolongation,

where individual notes are prolonged, rather than the spaces between them. Not surprisingly,

such a hierarchy can be represented as a tree containing notes for nodes, rather than intervals.

However, we immediately encounter a problem when trying to represent the passing tone

sequence D–C–B. The note C needs to connect to both the D and the B in our tree because

the C derives its musical function from both notes, yet if we restrict ourselves to binary trees,

we cannot represent this passing tone sequence elegantly: the C cannot connect to both D

and B at the same level of the hierarchy, and in a passing tone structure like this one, neither

the D nor the B is inherently more structural. Therefore, we have to make an arbitrary choice

and elevate one of the notes to a higher level in the tree. We need to make a similar choice

for other passing tone sequence B–A–G, which leads to another issue: the middle note B

23

occurs only once in the music, yet it participates in two different prolongations. There is

no elegant way to have the B be present on both sides of the prolongational tree, and again

we are forced to make an arbitrary choice regarding which prolongation “owns” the B. Such

choices destroy the inherent symmetry in the original musical passage, forcing us to draw a

tree such as in Figure 3.3.

D C B A G

Figure 3.3: The prolongational hierarchy of a G-major chord with passing tones represented
as a tree of notes. Notice how the tree cannot show the symmetry of the passing tone
sequences.

We mentioned above how the internal labels on the interval tree are not necessary because

they can be automatically determined from child nodes. This is easy to see because combining

two adjacent melodic intervals yields another interval (by removing the middle note and

considering the parent interval to be the entire time span from the first note to the last).

It is not immediately clear how to transfer this idea to a tree of separate notes; combining

two child notes does not yield a single parent note. Therefore, returning to the passing tone

example, if we want to represent that the C is less structural than the D, we must label the

internal nodes with additional information about structure, as in Figure 3.4.

D C B A G

B
D

G

D

Figure 3.4: The prolongational hierarchy using internal labels.

24

Clearly, using the interval tree — and the dynamic interpretation of prolongation over

static — leads to a cleaner representation of the prolongational hierarchy.

Interval trees can be more concisely represented using an alternate formulation. For an

interval tree T , consider creating a graph G where the vertices in G are all the individual

notes represented in T , and for every node x–y in T , we add the edge (x, y) to G. For Figure

3.2, this results in the structure shown in Figure 3.5, known as a maximal outerplanar graph,

henceforth known as a MOP1.

D G
B

C A

Figure 3.5: The prolongational hierarchy represented as a maximal outerplanar graph.

MOPs were first proposed as elegant structures for representing dynamic prolongations

in a Schenkerian-style hierarchy by Yust (2006). A single MOP represents a hierarchy of

intervals of a monophonic sequence of notes, though Yust proposed some extensions for

polyphony. A MOP contains the same information present in an interval tree. For instance,

the passing tone motion D–C–B mentioned frequently above is shown in a MOP by the

presence of the triangle D–C–B in Figure 3.5.

Formally, a MOP is a complete triangulation of a polygon, where the vertices of the

polygon are notes and the outer perimeter of the polygon consists of the melodic intervals

between consecutive notes of the original music, except for the edge connecting the first note

to the last, which we will refer to as the root edge, which is analogous to the root node of

an interval tree. Each triangle in the polygon specifies a prolongation. By expressing the

hierarchy in this fashion, each edge (x, y) carries the interpretation that notes x and y are

1Though perhaps a clearer abbreviation would be “MOPG,” we use the original abbreviation put forth
by Yust (2006).

25

“consecutive” at some level of abstraction of the music. Edges closer to the root edge express

more abstract relationships than edges farther away.

Outerplanarity is a property of a graph that can be drawn such that all the vertices are

on the perimeter of the graph. Such a condition is necessary for us to enforce the strict hi-

erarchy among the prolongations. A maximal outerplanar graph cannot have any additional

edges added to it without destroying the outerplanarity; such graphs are necessarily polygon

triangulations, and under this interpretation, all prolongations must occur over triples of

notes.

Using a MOP as a Schenkerian formalism for prolongations presents a number of rep-

resentational issues to overcome. First is the issue of only permitting prolongations among

triples of notes. Analysts sometimes identify prolongations occurring over larger groups of

notes; a prolongation over four notes, for example, would appear as an open quadrilateral

region in the MOP, waiting to be filled by an additional edge to turn the region into two

triangles. Yust argues that analyses with “holes” such as these are incomplete, because they

fail to completely specify how the notes of the music relate to each other. Therefore, we adopt

the convention that analyses must be complete: MOPs must be completely triangulated.

Second, there is no way to represent a prolongation with only a single “parent” note

in a MOP. Because MOPs inherently model prolongations as a way of moving from one

musical event to another event, every prolongation must always have two parent notes and a

single child note (these are the three notes of every triangle in the MOP). Music sometimes

presents situations that an analyst would model with a one-parent prolongation, such as an

incomplete neighbor tone. Yust interprets such prolongations as having a “missing” origin or

goal note that has been elided with a nearby structural note, which substitutes in the MOP

for the missing note. Yust uses dotted lines in his MOPs to illustrate this concept, though

we omit them in the work described here as they do not directly figure into the discussion.

26

A third representational issue stems from trying to represent prolongations involving

the first or last notes in the music. Prolongations necessarily take place over time, and in a

MOP, every prolongation must involve exactly three notes, where we interpret the temporally

middle note as prolonging the motion from the earliest note to the latest. Following this

temporal logic, we can infer that the root edge of a MOP must therefore necessarily be

between the first note of the music and the last, implying these are the two most structurally

important notes of a composition. As this is not always true in compositions, Yust adds two

pseudo-events to every MOP: an initiation event that is located temporally before the first

note of the music, and a termination event, which is temporally positioned after the last note.

The root edge of a MOP is fixed to always connect the initial event and the termination

event. These extra events allow for any melodic interval — and therefore any pair of notes in

the music — to be represented as the most structural event in the composition. For instance,

in Figure 3.6, which shows the D–C–B–A–G pattern with initiation and termination events

(labeled Start and Finish), the analyst has indicated that the G is the most structurally

significant note in the passage, as this note prolongs the motion along the root edge.

D G
B

C A

START FINISH

Figure 3.6: A MOP containing initiation and termination events.

We can now provide a formal definition of a MOP as used for representing musical

prolongations. Suppose we are given a monophonic sequence of notes n1, n2, . . . , nL. Define

a set of vertices V = {n1, n2, . . . , nL,Start,Finish}. Consider a set of directed edges

E ⊆ V × V , with the requirements that that (a) for all integers 1 ≤ i < L, the edge

27

(ni, ni+1) ∈ E, and (b) the edge (Start,Finish) ∈ E. The graph G = (V,E) is a MOP if

and only if E contains additional edges in order to make G a maximal outerplanar graph.

If G is a MOP, then G has the following musical interpretation. For every temporally-

ordered triple of vertices (x, y, z) ∈ V 3, if the edges (x, y), (y, z), and (x, z) are members of E,

then we say that the melodic interval x–z is prolonged by the sub-intervals x–y and y–z, or

slightly less formally, that the melodic interval x–z is prolonged by the note y. Hierarchically,

the parent interval x–z has two child intervals, x–y and y–z; or equivalently, the child note

y has two parent notes, x and z.

3.2 MOPs and search space size

Later we propose a number of algorithms for automatic Schenkerian-style analysis, but

in this section we discuss how our choice of MOPs for modeling Schenkerian-style analysis

affects the size of the search space that these algorithms must explore to find the “best”

analysis.

First, we calculate the size of the search space under the MOP model. Given a sequence

of n notes, we want to compute the total number of MOPs possible that could be constructed

from these n notes. Any MOP containing n notes must have one vertex for each note, plus

two additional vertices for the initiation and termination events, for n + 2 total vertices.

These n + 2 vertices will fall on the perimeter of a polygon that the resulting MOP will

triangulate, and therefore the perimeter will be comprised of n+2 edges. One of these edges

is the root edge, leaving n + 1 other perimeter edges, each of which would correspond to a

leaf node in an equivalent (binary) interval tree. The number of possible binary trees having

n + 1 leaf nodes is the nth Catalan number (Cn), so the size of the search space with the

MOP representation is

Cn =
1

n+ 1

(
2n

n

)
.

28

Using Stirling’s approximation, we can rewrite this as

Cn ≈
4n

n3/2
√
π

= O(4n).

Now, we will consider the size of the search space if we used a static prolongation model,

such as a hierarchy of individual notes, rather than a dynamic prolongation model like MOPs.

Recall that if we use static prolongations, we must construct a tree of notes, rather than

melodic intervals. Again, let us assume we are given a sequence of n notes to analyze. We

know by the same logic used above that there are Cn−1 possible binary trees that could be

constructed from these notes, but we are forgetting that we also must choose the labels for

the n − 1 internal nodes of the tree — an extra step not necessary for interval trees. Each

internal node may inherit the label of either child node, leading to a total of

2n−1Cn−1 = O(8n)

possible note hierarchies.

Clearly, though both search spaces are exponential in size, the MOP model leads to an

asymptotically smaller space.

3.3 Algorithms for MOPs

Later, we examine an algorithm that produces the most likely MOP analysis for a given

piece of music. In order to judge the algorithm’s performance, it will be useful to have a

baseline level of accuracy that could be obtained from a hypothetical algorithm that creates

MOPs in a stochastic fashion. Therefore, we derive two algorithms that allow us to (a)

select a MOP uniformly at random from all possible MOPs for a given note sequence, and

(b) iterate through all possible MOPs for such a sequence of notes.

29

3.3.1 Creating a MOP uniformly at random

The first algorithm addresses the problem of creating a random-constructed MOP. More

specifically, given a sequence of n notes, we would like to choose a MOP uniformly at random

from the Cn possible MOPs that could be created from the notes, and then construct this

MOP efficiently.

Because MOPs are equivalent to polygon triangulations, we phrase this algorithm in terms

of finding a random polygon triangulation. A completely triangulated polygon contains two

types of edges: edges on the perimeter of the polygon, which we will call perimeter edges, and

edges not on the perimeter, which we will call internal edges. Clearly, every perimeter edge

in a triangulation is part of exactly one triangle (internal edges participate in two triangles,

one on each side of the edge). Therefore, an algorithm to construct a complete polygon

triangulation can proceed by iterating through each perimeter edge in a polygon and if the

edge in question is not on the boundary of a triangle, then we can add either one or two

edges to the triangulation to triangulate the edge in question.

Let us use the following example. Say we have the polygon A–B–C–D–E, as appears in

the top row of Figure 3.7, and we want to triangulate perimeter edge A–B. This can be done

by selecting one of vertices C, D, or E, and adding edges to form the triangle connecting A,

B, and the selected vertex, as shown in the middle row of the figure. From here, depending

on which vertex we chose, we either have a complete triangulation (having chosen vertex

D), or we need to continue by triangulating an additional perimeter edge (having chosen

vertex C or E), which can be accomplished via another iteration of the same procedure we

just described. The result is a completely triangulated polygon; the shaded pentagons in the

figure illustrate the five possible outcomes of the algorithm.

The only caveat left in describing our algorithm is the procedure for choosing the third

vertex when triangulating a perimeter edge. In our example, consider completing the triangle

for perimeter edge A–B choosing between vertices C, D, and E. We would like to make a

30

A

B

CD

E

A

B

CD

E

A

B

CD

E

A

B

CD

E

A

B

CD

E

A

B

CD

E

A

B

CD

E

A

B

CD

E

Figure 3.7: The decisions inherent in creation a MOP uniformly at random. The top row
shows a completely untriangulated pentagon. The middle row shows the three possibilities
for triangulating the edge A–B. The bottom row shows the possibilities for triangulating a
remaining perimeter edge.

31

selection in a probabilistic manner such that each of the five complete triangulations has

an equally likely chance of being produced. However, choosing uniformly at random among

the three vertices (i.e., each with probability 1/3) will not lead to a uniform probability

over the five complete triangulations. This is evident because if we choose from the vertices

uniformly, the probability of the algorithm creating the complete triangulation in the middle

row of Figure 3.7 is 1/3, and the remaining four triangulations have probabilities each of

(1/3)(1/2) = 1/6, which is clearly not a uniform distribution.

Instead, given a perimeter edge, we will weight the probability of choosing each possible

vertex for a triangle non-uniformly using the following idea. Notice that whenever we trian-

gulate a particular perimeter edge, the new triangle added divides the polygon into at most

three subpolygons. At least one of these subpolygons will be a triangle, leaving at most two

subpolygons remaining to be triangulated. We can calculate the number of further subtrian-

gulations possible for each subpolygon using the Catalan numbers, and thereby calculate the

total number of MOPs possible for each vertex. We can then use these numbers to weight

the choice of vertex appropriately.

Suppose we label the vertices in our polygon v1, v2, . . . , vn, and without loss of generality,

consider completing the triangle for edge v1–v2. The possible third vertices are {v3, . . . , vn};

suppose we choose vi. The number of vertices in the two resulting subpolygons that may

need further triangulation are i−1 and n−i+2, meaning the number of subtriangulations for

each of the two subpolygons, are Ci−3 and Cn−i respectively, where Cm is the mth Catalan

number.

Define a probability mass function P as

P (vi) =
Ci−3 · Cn−i

Cn−2
.

32

This pmf P gives rise to a probability distribution known as the Narayana distribution (John-

son et al., 2005), a shifted variant of the hypergeometric distribution. It can be shown that∑n
i=3 P (vi) = 1, demonstrating that this pmf leads to a valid probability distribution. We

argue that using P to select vertices for our triangles leads to a uniform random distribution

over MOPs.

Figure 3.7 illustrates how this works. To move from the top row of the figure to the

middle row, we can choose from vertices C, D, or E to triangulate perimeter edge A–B. If

we choose vertex D, our two subpolygons are triangles themselves (A–D–E and B–C–D),

so P (D) = (C1 · C1)/C3 = (1 · 1)/5 = 1/5. Appropriately, we learn P (C) = P (E) =

C0 ·C2/C3 = (1 ·2)/5 = 2/5. Choosing vertex C or E requires us to triangulate another edge

to move to the bottom row of the figure; the probabilities for each choice at this step are all

(C1 ·C1)/C2 = 1/2, so all four complete triangulations on the bottom row end up with total

probabilities of (2/5)(1/2) = 1/5, which makes all five complete triangulations equiprobable.

Pseudocode for this algorithm is presented as Algorithm 1. The running time is linear in

the number of vertices of the polygon, or equivalently, the number of notes of the music in

question.

Algorithm 1 Create a MOP selected uniformly at random

1: procedure Create-Random-Mop(p) . p is a polygon with vertices v1, . . . , vn
2: for each perimeter edge e = (vx, vy) in p do
3: if e is not triangulated then
4: Choose a vertex vi according to the probability distribution defined by pmf P .
5: Add edges (vx, vi) and (vi, vy) to p
6: end if
7: end for
8: end procedure

33

3.3.2 Enumerating all MOPs

Our next algorithm is a method for efficiently enumerating all MOPs possible for a fixed

set of notes. Again, as in the previous section, we will phrase this algorithm in terms of

polygon triangulations.

Let us assume we have a polygon with n vertices that we wish to triangulate. Con-

sider the set of non-decreasing sequences of length n − 2 consisting of elements chosen

from the set of integers [0, n − 3]. Furthermore, restrict this set to only those sequences

[x0, x1, . . . , xj, . . . , xn−3] such that for all j, xj ≤ j. As an example, the possible sequences

that meet this criteria for n = 5 are [0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 1, 1], and [0, 1, 2].

Črepinšek and Mernik (2009) demonstrated that the total number of possible sequences

that meet the criteria above for a given n is Cn, and also provided an algorithm for iterating

through the sequences, imposing a total order upon them. We will provide an algorithm that

provides a one-to-one mapping between a sequence, henceforth known as a configuration, and

a polygon triangulation, therefore supplying a method for iterating over MOPs in a logical

manner.

Our algorithm uses the fact that for a polygon with n vertices, a complete polygon

triangulation is comprised of n − 2 triangles, and a configuration also has n − 2 elements.

Each element in the configuration will become a triangle in the triangulation.

Assume a polygon p’s vertices are labeled clockwise from v0 to vn−1, and we wish to

obtain the triangulation corresponding to a sequence x = [x0, . . . , xn−3]. We maintain a

subpolygon p′ that corresponds to the region of p that remains untriangulated; initially,

p′ = p. For each element xi in x, examined from right to left, we interpret xi as a vertex of

p′, and find the two smallest integers j and k such that (a) vj and vk that are in p′, and (b)

xi < j < k. Graphically, this can be interpreted as inspecting the vertices of p′ clockwise,

starting from vertex vxi
. We then add the edge (vxi

, vk) to our triangulation. This new edge

34

will necessarily create the triangle (vxi
, vj, vk), so we remove the vertex vj from p′ to update

the untriangulated region of our polygon.

Let us show an example of how this algorithm would work for a hexagon using the

configuration x = [0, 1, 2, 2]. As is illustrated in Figure 3.8, initially, the untriangulated

region consists of all the vertices p′ = {v0, v1, v2, v3, v4, v5}. Examining the rightmost element

of x, a 2, we locate the two lowest numbered vertices in p′ greater than 2, which are j = 3

and k = 4. We add the edge (v2, v4) to our triangulation and remove v3 from p′. The next

element in x is another 2, so we repeat this procedure to obtain xj = 4 and k = 5. We

add the edge (v4, v5) to our triangulation and remove v4 from p′. The next element in x

is a 1, so j = 2 and k = 5. We add the edge (v1, v5) to our triangulation. The algorithm

may terminate here because we do not need to examine the last element in x — notice that

creating the second-to-last triangle also necessarily creates the last one.

2 2

1

34

5

01

34

5

0

2

34

5

0 1

2

1

34

5

0

(a) (b)

(c) (d)

Figure 3.8: The four steps of creating the polygon triangulation of a hexagon corresponding
to configuration [0, 1, 2, 2]. (a) Untriangulated polygon. (b) After step 1. (c) After step 2.
(d) After step 3.

35

Pseudocode for the algorithm is provided as Algorithm 2. The vertices of the p′ polygon

can be maintained via a linked list, for O(1) removal, with an additional array maintained for

O(1) indexing. Using this method sacrifices some space but turns the search for appropriate

values for j and k into a constant-time operation. For a polygon with n vertices, the main

loop of the algorithm will always create exactly n− 3 edges, so the running time is O(n).

Algorithm 2 Create a MOP from a configuration sequence

1: procedure Mop-From-Config(p, x) . p is a polygon with vertices v0, . . . , vn−1
2: . x is a valid configuration sequence
3: p′ = {v0, . . . , vn−1}
4: for i← n− 3 downto 1 do
5: find the smallest j > xi in p′

6: find the smallest k > j in p′

7: add edge (vxi
, vk) to triangulation

8: p′ ← p′ − {vj}
9: end for

10: end procedure

36

CHAPTER 4

THE CORPUS

In the remainder of this dissertation, we study a completely data-driven approach to

modeling music analysis in a Schenkerian style. We use a supervised learning approach, and

therefore require a corpus of data — in this case, musical compositions and their correspond-

ing analyses — with which to derive information which will become part of an algorithm. In

this chapter we explore the creation of this corpus and describe the results of an experiment

that strongly suggests that finding an algorithm for hierarchical analysis is feasible.1

4.1 Creation of a corpus

A supervised machine learning algorithm is designed to process a collection of (x, y)

pairs in order to produce a function f that can map previously-unseen x-values to their

corresponding y-values. In our situation, x-values are pieces of music and y-values are the

corresponding hierarchical analyses. Therefore, under this paradigm, we require a corpus of

musical compositions along with their Schenkerian analyses so that the resulting function

f will be able to accept new pieces of music and output analyses for the pieces. However,

creating such a corpus is a challenging task for a number of reasons.

First, although Schenkerian analysis is the primary technique for structural analysis of

music, there are no central repositories of analyses available. Because analyses are usually

1This chapter draws heavily on the description and experimental results first published in Kirlin and
Jensen (2011).

37

produced for specific pedagogical or research purposes, analyses are usually found scattered

throughout textbooks or music theory journals. Second, the very form of the analyses makes

them difficult to store in printed format: a Schenkerian analysis is illustrated using the

musical score itself and commonly requires multiple staves to show the hierarchy of levels.

This requires substantial space on the printed page and is a deterrent to retaining large sets

of analyses. Third, there is no established computer-interpretable format for Schenkerian

analysis storage, and fourth, even if there were a format, it would take a great deal of effort

to encode a number of analyses into processable computer files.

We solved these issues by scouring textbooks, journals, and notes from Schenkerian ex-

perts, devising a text-based representation of Schenkerian analysis, and manually encoding

a large number of analyses in this representation. We selected excerpts from scores by Jo-

hann Sebastian Bach, George Frideric Handel, Joseph Haydn, Muzio Clementi, Wolfgang

Amadeus Mozart, Ludwig van Beethoven, Franz Schubert, and Frédéric Chopin. All of the

compositions were either for a solo keyboard instrument (or arranged for such an instru-

ment) or for voice with keyboard accompaniment. All were in major keys, and we only

used excerpts of the music that did not modulate. All the excerpts contained a single linear

progression as the fundamental background structure — either an instance of the Ursatz

or a rising linear progression. Some excerpts contained an Ursatz with an interruption: a

Schenkerian construct that occurs when a musical phrase ends with an incomplete instance

of the Ursatz, then repeats with a complete version; these excerpts were encoded as two

separate examples in the corpus. These restrictions were put in place because we expected

that machine learning algorithms would be able to better model a corpus with less variability

among the pieces. In other words, we hypothesized that the underlying prolongations found

in Schenkerian analyses done on (for instance) major-key compositions could be different

than those found in minor-key pieces.

38

Analyses for the 41 excerpts chosen came from four places: Forte and Gilbert’s textbook

Introduction to Schenkerian Analysis (1982a) and the corresponding instructor’s manual

(1982b), Cadwallader and Gagne’s textbook Analysis of Tonal Music (1998), Pankhurst’s

handbook SchenkerGUIDE (2008), and a professor of music theory who teaches a Schenke-

rian analysis class. These four sources are denoted by the labels F&G, C&G, SG, and Expert

in the Table 4.1, which lists the excerpts in the corpus.

Table 4.1: The music excerpts in the corpus.

Excerpt ID Composition Analysis source
mozart1 Piano Sonata 11 in A major, K. 331, I, mm. 1–8 F&G
mozart2 Piano Sonata 13 in B-flat major, K. 333, III, mm. 1–8 F&G manual
mozart3 Piano Sonata 16 in C major, K. 545, III, mm. 1–8 F&G manual
mozart4 Six Variations on an Allegretto, K. Anh. 137, mm. 1–8 F&G manual
mozart5 Piano Sonata 7 in C major, K. 309, I, mm. 1–8 C&G
mozart6 Piano Sonata 13 in B-flat major, K. 333, I, mm. 1–4 F&G
mozart7 7 Variations in D major on “Willem van Nassau,” K. 25,

mm. 1–6 SG
mozart8 Twelve Variations on “Ah vous dirai-je, Maman,” K. 265,

Var. 1, mm. 23–32 SG, C&G
mozart9 12 Variations in E-flat major on “La belle Françoise,” K. 353,

Theme, mm. 1–3 SG
mozart10 Minuet in F for Keyboard, K. 5, mm. 1–4 SG
mozart11 8 Minuets, K. 315, No. 1, Trio, mm. 1–8 SG
mozart12 12 Minuets, K. 103, No. 4, Trio, mm. 15–16 SG
mozart13 12 Minuets, K. 103, No. 3, Trio mm. 7–8, SG
mozart14 Untitled from the London Sketchbook, K. 15a, No. 1, mm. 12–14 SG
mozart15 9 Variations in C major on “Lison dormait,” K. 264,

Theme, mm. 5–8 SG
mozart16 12 Minuets, K. 103, No. 12, Trio, mm. 13–16 SG
mozart17 12 Minuets, K. 103, No. 1, Trio, mm. 1–8 SG
mozart18 Piece in F for Keyboard, K. 33B, mm. 7–12 SG
schubert1 Impromptu in B-flat major, Op. 142, No. 3, mm. 1–8 F&G manual
schubert2 Impromptu in G-flat major, Op. 90, No. 3, mm. 1–8 F&G manual
schubert3 Impromptu in A-flat major, Op. 142, No. 2, mm. 1–8 C&G
schubert4 Wanderer’s Nachtlied, Op. 4, No. 3, mm. 1–3 SG
handel1 Trio Sonata in B-flat major, Gavotte, mm. 1–4 Expert
haydn1 Divertimento in B-flat major, Hob. 11/46, II, mm. 1–8 F&G
haydn2 Piano Sonata in C major, Hob. XVI/35, I, mm. 1–8 F&G
haydn3 Twelve Minuets, Hob. IX/11, Minuet No. 3, mm. 1–8 SG
haydn4 Piano Sonata in G major, Hob. XVI/39, I, mm. 1–2 SG
haydn5 Hob. XVII/3, Variation I, mm. 19–20 SG
haydn6 Hob. I/85, Trio, mm. 39–42 SG

Continued on next page

39

Table 4.1 — continued from previous page
Composer Composition Analysis source
haydn7 Hob. I/85, Menuetto, mm. 1–8 SG
bach1 Minuet in G major, BWV Anh. 114, mm. 1–16 Expert
bach2 Chorale 233, Werde munter, mein Gemute, mm. 1–4 Expert
bach3 Chorale 317 (BWV 156), Herr, wie du willt, so schicks mit mir, mm. 1–5 F&G manual
beethoven1 Seven Variations on a Theme by P. Winter, WoO 75,

Variation 1, mm.1–8 C&G
beethoven2 Seven Variations on a Theme by P. Winter, WoO 75,

Theme, mm. 1–8 C&G
beethoven3 Ninth Symphony, Ode to Joy theme from finale (8 measures) SG
beethoven4 Piano Sonata in F minor, Op. 2, No. 1, Trio, mm. 1–4 SG
beethoven5 Seven Variations on God Save the King, Theme, mm. 1–6 SG
chopin1 Mazurka, Op. 17, No. 1, mm. 1–4 SG
chopin2 Grande Valse Brilliante, Op. 18, mm. 5–12 SG
clementi1 Sonatina for Piano, Op. 38, No. 1, mm. 1–2 SG

4.2 Encoding the corpus

With our selected musical excerpts and our corresponding analyses in hand, we needed

to translate the musical information into machine-readable form. Musical data has many

established encoding schemes; we used MusicXML, a format that preserves more information

from the original score than say, MIDI.

To encode the analyses, we devised a text-based file format that could encode any sort of

prolongation found in a Schenkerian analysis, as well as other Schenkerian phenomena, such

as manifestations of the Ursatz. The format is easy for the human to input and easy for the

computer to parse. Prolongations are represented using the syntax X (Y) Z, where X and Z

are individual notes in the score and Y is a non-empty list of notes. Such a statement means

that the notes in Y prolong the motion from note X to note Z. Additionally, we permit

incomplete prolongations in the text file representation: one of X or Z may be omitted.

The text file description is more relaxed than the MOP representation to allow for easy

human creation of analyses. Frequently, analyses found in textbooks or articles do not show

every prolongation in the score, lest the analysis become visually cluttered. For instance,

40

it is common for an analyst to indicate a prolongation with multiple child notes, without

identifying any further structural importance among the child notes. Such a prolongation,

if translated into a MOP, would appear as a region larger than a triangle (e.g., a quadrilat-

eral for a prolongation with two child notes). Sometimes, one can infer what the omitted

prolongations should be from context, but in other cases the analyst’s intent is unclear.

We devised an algorithm to translate the text file analyses into MOPs. The algorithm

largely translates prolongations in the text files to equivalent MOP prolongations, though

extra steps are needed to handle incomplete prolongations in the text files. We permitted

any prolongations with multiple child notes to be translated unchanged, meaning we allow

MOPs to appear in the corpus not fully triangulated. Situations where we require fully-

triangulated MOPs will be mentioned later, along with procedures for working around the

missing prolongations.

Overall, the corpus contained 253 measures of music, 907 notes, and 792 prolongations.

The lengths of individual excerpts ranged from 6 to 53 notes, which implies that the sizes of

the individual search spaces ranged from 132 possible analyses (for an excerpt of 6 notes) to

approximately 1.16× 1029 possible analyses (for an excerpt of 53 notes).

4.3 The feasibility of analysis

We used this corpus to evaluate whether humans perform Schenkerian analysis in a

consistent manner. We calculated the frequencies of prolongations found in our corpus in

order to determine whether humans prefer locating certain types of prolongations over others.

Finding such prolongations, or equivalently, a disinclination to have certain prolongations

in an analysis, suggests that there are rules governing the process for analysis that could be

extracted from the corpus.

Our first step was to calculate how often every type of prolongation appeared in the

analyses in our corpus. Because each triangle in a MOP specifies the prolongation of an

41

interval by two other intervals, we simply counted the frequencies of every type of triangle

found in the MOP analyses. Triangles were defined by an ordered triple of the size of

the parent interval and the sizes of the two child intervals. Intervals were denoted by size

only, not quality or direction (e.g., an ascending major third was considered equivalent to

a descending minor third), except in the case of unisons, where we distinguished between

perfect and non-perfect unisons. Intervening octaves in intervals were removed (e.g., octaves

were reduced to unisons), and furthermore, if any interval was larger than a fourth, it was

inverted in the triple. These transformations equate prolongations that are identical under

octave displacement. For example, the triples of notes (C, D, E), (E, D, C), (C, D[, E), (E,

D[, C), (C, D[, E[), and (E[, D[, C) are all considered equivalent in our definition because

each triple consists of a parent interval of a melodic third being elaborated by two melodic

seconds.

Because the corpus of analyses contains polygons larger than triangles, extra care was

required to derive appropriate triangle frequencies for these larger polygons. Our procedure

was to enumerate all possible triangles that could appear in a triangulation of a larger

polygon, and, for each of these triangles, calculate the probability that the triangle would

appear in a triangulation. If we assume a uniform distribution over all possible triangulations

of the larger polygon, this is a straightforward calculation.

Assume we have a polygon with n vertices, numbered clockwise from 0 to n− 1, and we

are interested in the probability that the triangle between vertices x, y, and z (x < y < z)

appears in a complete triangulation of this polygon. This probability can be calculated from

the number of complete triangulations of the polygon, which we know to be Cn−2, and the

number of complete triangulations that contain the triangle in question, 4xyz.

To calculate this second quantity, we observe that any triangle drawn inside a polygon

necessarily divides the interior of the polygon into four regions: the triangle itself, plus the

three regions outside the triangle but inside the polygon (though it is possible for some of

42

these regions to be degenerate line segments). Any complete triangulation of the polygon

that contains 4xyz must necessarily completely triangulate the three remaining regions

outside of the triangle, and we simply multiply the number of ways of triangulating each

of those three regions to obtain the total number of complete triangulations that contain

4xyz.

The number of ways of triangulating each of the three regions is directly related to the

size of each region, which we can calculate from the values of the vertices x, y, and z. The

sizes (number of vertices in the polygons) of these regions are y − x + 1, z − y + 1, and

n + x − z + 1, respectively. The number of ways to triangulate each region is the Catalan

number for the size of each region minus two, and therefore the complete calculation for our

desired probability is

P (4xyz) =
Cy−x−1 · Cz−y−1 · Cn+x−z−1

Cn−2
.

After calculating frequencies for all the types of triangle in the corpus, we tested them

to see which were statistically significant given the null hypothesis that the corpus analyses

resemble randomly-performed analyses (where any triangulation of a MOP is as likely as

any other) in their triangle frequencies. To calculate the expected frequencies under the

null hypothesis, we took each analysis from the corpus, removed all internal edges to obtain

a completely untriangulated polygon, and used the same probability calculation as above

to compute the expected frequencies of every type of triangle possible. We compared these

frequencies to the observed frequencies from the corpus analyses and ran individual binomial

tests for each type of triangle to determine if the observed frequency differed significantly

from the expected frequency.

There were 49 different types of triangle possible, considering the music in the corpus.

Assuming we are interested in triangles whose difference in frequencies is statistically sig-

nificant at the 5% level, using the Šidák correction indicates we need to look for triangles

43

Interval L–R Interval L–M Interval M–R Observed Expected p-value
frequency frequency

second perfect unison second 101 28 3.0× 10−28

third second second 216 109 7.2× 10−23

perfect unison third third 46 20 7.8× 10−7

second third second 77 50 1.9× 10−4

Table 4.2: The four triangle types whose differences in observed and expected frequency
were statistically significant and appear more frequently than would be expected under the
null hypothesis. The first three columns indicate the intervals from the left note to the right
note, the left to the middle, and the middle to the right.

Interval L–R Interval L–M Interval M–R Observed Expected p-value
frequency frequency

fourth second third 4 38 2.3× 10−12

third fourth second 3 26 2.4× 10−8

third second fourth 1 21 2.7× 10−8

fourth third second 13 41 3.8× 10−7

fourth second fourth 3 22 1.1× 10−6

fourth fourth second 6 25 7.1× 10−6

second second perfect unison 9 27 6.2× 10−5

Table 4.3: The seven triangle types whose differences in observed and expected frequency
were statistically significant and appear less frequently than would be expected under the
null hypothesis.

whose binomial tests resulted in p-values smaller than 0.001. There were eleven types of tri-

angles that met this criteria, not counting triangles that used the Start or Finish vertices

as endpoints. Tables 4.2 and 4.3 show the eleven types, though because intervals have had

intervening octaves removed and are inverted if larger than a fourth, each type of triangle

represents an entire class of prolongations.

We can provide musical explanations for a number of the different triangle types in Tables

4.2 and 4.3. The first row of the Table 4.2 indicates that the type of prolongation that had

the most statistically significant differences between the observed and expected frequencies

was the interval of a second being prolonged by a perfect unison and then another second.

44

Musically, this often occurs in the ground-truth analyses when repeated notes are merged

into a single note (a perfect unison means the notes of the interval are identical). The second

row of the table has a much more musically interesting explanation. A third being elaborated

by two seconds is exactly the passing tone pattern discussed earlier in this dissertation. This

is one of the most fundamental types of prolongation, so it makes sense that such a pattern

was observed almost twice as often as would be expected.

The third row of Table 4.2 indicates that prolonging a perfect unison with a leap of a third

and then back to the original note also appears more frequently than would be expected.

A musical interpretation of this prolongation is when a composer chooses to decorate a

note of a chord by leaping to another chord tone a third away, then back to the starting

pitch, a common prolongation that could be identified by an analyst during arpeggiations

in the music. The last row of Table 4.2 corresponds to another kind of frequently-found

prolongation: a second being prolonged by a skip of a third, and then a step (a second) in

the other direction. (We can deduce the direction change from context — it is impossible

to have the third and the second be in the same direction, because then the overall interval

would be a fourth.) This type of prolongation is found when composers choose to decorate

a stepwise pattern with a leap in the middle to add melodic interest.

The rows of Table 4.3 illustrate prolongations that are found less frequently than would

be expected if the corpus analyses were chosen at random. Thus, these prolongations can be

interpreted as those that analysts tend to avoid for musical reasons, or at least those that

are less musically plausible when other prolongations are available.

The fact that we can identify these consistencies in human-produced analyses strongly

suggests that the Schenkerian analysis procedure is not random, and that there are rules that

we can uncover through methodical examination of the corpus. It also suggests that at least

some of these rules are not specific to the analyst, as we could uncover these statistically

45

significant differences in triangle frequencies even from a corpus containing analyses produced

by different people.

46

CHAPTER 5

A JOINT PROBABILITY MODEL FOR MUSICAL
STRUCTURES

In Chapter 3 we introduced the MOP, a data structure conceived for storing Schenkerian-

style hierarchical analyses of a monophonic sequence of notes. In this chapter, we impose

a mathematical model upon a MOP that will allow us to calculate the probability that a

particular MOP analysis is the best one for a given piece of music.1

5.1 A probabilistic interpretation of MOPs

Recall that, given a sequence of n notes, a MOP is constructed over a polygon whose

vertices are the n notes plus two additional Start and Finish pseudo-events, for a total of

n + 2 vertices. There are Cn (the nth Catalan number) possible ways to triangulate such a

polygon, and every possible triangulation will contain n internal triangles. Each triangle has

three endpoints, which we will denote by L, R, and C, corresponding to the left parent note,

the right parent note, and the child note, respectively. The assignment of these labels to a

triangle is unambiguous because MOPs are “oriented” by virtue of the temporal dimension:

the left endpoint is always the earliest note of the three, while the right endpoint is always the

latest. This corresponds exactly to our interpretation of a musical prolongation as described

earlier: a prolongation always occurs among exactly three notes, where the middle (child)

note prolongs the motion from the left note to the right.

1Preliminary results of some of the work described in this section are presented in Kirlin and Jensen
(2011).

47

We now define two probability distributions over triangles defined by their three end-

points: the joint triangle distribution P (L,C,R), and the conditional triangle distribution

P (C | L,R). The joint distribution tells us the how likely it is for a certain type of triangle

to appear in an analysis, whereas the conditional distribution tells us how likely it is for

given melodic interval (from L to R) to be prolonged by a given child note (C).

We are interested in these distributions because they can be used to build a probabilistic

model for an entire analysis in MOP form. Assume we are given a sequence of notes N =

(n1, n2, . . . , nL). We may define the probability of a MOP analysis A as P (A | N). Because

a MOP analysis is defined by the set of triangles Tall comprising the MOP, we will define

P (A | N) := P (Tall) = P (T1, T2, . . . , Tm).

We would like to use the corpus of analyses described in Chapter 5 to train a mathematical

model to estimate the probability above. However, the curse of dimensionality prevents us

from directly using the joint probability distribution P (T1, T2, . . . , Tm) as the basis for the

model because doing so would require many more ground-truth analyses than we have in

our corpus — and almost certainly more than anyone has available — to get good estimates

of the joint probabilities for every combination of triangles. Instead, as an approximation,

we will assume that the presence of a given type of triangle in a MOP is independent of the

presence of all other triangles in the MOP. In other words,

P (A | N) := P (Tall) = P (T1, T2, . . . , Tm) = P (T1) · P (T2) · · ·P (Tm).

From here, we can use either the joint triangle distribution or the conditional triangle

distribution to define P (Ti). The main issue distinguishing the distributions can be thought

of as how they reward (or penalize) frequently-occurring (or uncommon) triangles found in

48

analyses. The joint distribution is blind to the context in which a triangle occurs, in that the

joint probability can be thought of as a straightforward representation of how common it is

for a triangle to be found in an analysis. The conditional distribution, on the other hand,

calculates a triangle’s probability by assuming — in a sense — that the left and right parent

notes are fixed and only an appropriate child note needs to be selected. The conditional

distribution also has some elegant mathematical properties that relate to the algorithms

that we will describe in the next chapter.

As will become clear in later chapters, we are primarily concerned with using P (A | N) to

rank a set of candidate analyses, rather than using the probability P (A | N) itself as a number

in further calculations. That is, we are more interested in having numeric comparisons

between P (A1 | N) and P (A2 | N) being accurate for all pairs of analyses A1, A2 as

opposed to the probability estimates being close to the true probabilities. We can perform

an experiment to answer two related questions regarding these relative comparisons. First,

we want to know if making the independence assumption preserves the relative rank ordering

for analyses; and second, we wish to learn if the joint or conditional triangle distribution

performs better than the other at the task of ranking analyses.

A single experiment will answer both questions for us. Briefly, we begin by generating

a number of different possible analyses for a single piece of music and ranking them by

decreasing similarity to a randomly-chosen “best” analysis. We use this synthetic ranking

to generate a synthetic corpus of MOPs by sampling the MOP analyses from the ranking

proportionally to rank (higher-ranked MOPs are sampled more often). Next, we compute

the triangle frequencies in the synthetic corpus using the same procedure described in the

previous chapter, and use these frequencies to construct the P (A | N) distributions for the

joint and conditional triangle models using the independence assumption. We use these

distributions to re-rank all of the candidate analyses, and then compare this new ranking

49

to our original synthetic ranking. If the independence assumption preserves rank orderings,

then the two rankings should be similar. This procedure is illustrated in Figure 5.1.

Corpus

RankingRankingRankingRanking
RankingRankingRankingNew ranking

Model

Compute
prolongation

frequencies and
probabilities

Re-rank MOPs
by probability

estimates

Sample MOPs
proportionally to

rank

Same?

Figure 5.1: A visual depiction of the reranking procedure used to judge the appropriateness
of the independence assumption.

The exact procedure is as follows. We assume that every note in a piece of music is

distinguishable from every other note, something not feasible with smaller data sets, but

done here with the knowledge that humans may use a note’s location within the piece as

a feature of the note to guide the analysis procedure. Therefore, each piece of music is

represented by a sequence of integers N = (1, 2, . . . , n). We take a uniform sample of

1,000 MOPs (using Algorithm 1) from the space of possible MOPs over N ; the sampling is

necessary as we have already illustrated how the number of MOPs grows exponentially in

relation to N .

We randomly select one MOP to be the “best” analysis, and create an array A with the

1,000 MOPs sorted in decreasing order of similarity to the best MOP, where similarity is

defined as the number of triangles in common between two MOPs. We place the best MOP

at A[0]. We use a variation of the normal distribution to sample one million MOPs from A

50

as follows: each sample is the MOP at position i in the array, where i is the absolute value

of a normal random variable with µ = 0 and varying σ, rounded down. Values of i that

correspond to MOPs outside of array A are resampled. The one million sampled MOPs are

placed into a multiset M and sorted by decreasing frequency into an array R, representing

the ground-truth ranking of MOPs.

We then compute the frequency of each triangle in multiset M , calculate the probabil-

ities for each triangle under the joint and conditional models, and use the independence

assumption to compute a probability estimate for each MOP. We generate a new ranking R′

of the MOPs from their probability estimates, and compute three different rank correlation

coefficients to test how well the re-ranking R′ compares with the original ranking R. We

use Spearman’s ρ and Kendall’s τ , which are standard correlation metrics, but we also use

a coefficient developed by da Costa and Soares (2005) called rW that more heavily weights

higher items in the ranking, which Spearman and Kendall’s coefficients do not.

We compute these ranking correlation coefficients for R versus R′ using lengths of note

sequences n between 10 and 50, and standard deviations σ for the normal distribution varying

between 1 and 20. σ determines the number of analyses r ranked in R and R′ by the formula

r ≈ 4.66σ+ 1.65. In other words, when σ = 1, the random procedure only selects five or six

analyses from the 1,000 available in A, but when σ = 20, approximately 95 are selected.

The three correlation coefficients always take on values between −1 and 1, with 1 indi-

cating the two rankings are identical and −1 meaning the two rankings are reverses of each

other. Figure 5.2 shows heatmaps for the three coefficients using the joint and conditional

triangle models. Under the joint model, the mean values of ρ, τ , and rW are 0.9633, 0.8852,

and 0.9722, respectively, while under the conditional model the means are 0.9482, 0.8298,

0.9525. These numbers indicate (a) that the independence assumption does seem to pre-

serve relative probability judgements because the mean rank coefficients are all close to 1

51

and individual coefficients for the various combinations of n and σ never fall below 0.5, and

(b) the joint model slightly outperforms the conditional model.

5.2 Estimating triangle frequencies

Given the high performance of ranking given the assumption of independence, we return

to the issue of using the corpus of analyses to obtain estimates for the probability of an

individual triangle being found in an analysis, under either the joint or conditional models.

A straightforward way to estimate these quantities is to count their frequencies in the corpus

and normalize them to obtain a probability distribution. For example, to estimate the

probability of the triangle formed by endpoints L, C, and R under the joint triangle model,

we would divide the number of times triangle 4LCR appears in the corpus by the total

number of triangles in the corpus (here, 907 triangles). Under the conditional triangle model,

we would divide the number of times triangle 4LCR appears by the number of times any

triangle containing endpoints L and R (with any C) appears.

This approach yields better estimates with a large corpus and a small number of triangle

categories. In Chapter 5, we showed how even when categorizing triangles by the melodic

intervals between the endpoints — intervals that had had intervening octaves removed and

some intervals inverted to diminish the number of possible categories — there were still 49

categories of triangle to consider. Furthermore, we wish to use more information from the

music to guide the analysis process by introducing more features into the triangle descrip-

tions, such as harmonic and metrical information. The curse of dimensionality again would

requires us to have a much larger corpus than we had access to.

In order to create a more accurate model that can handle more features with a smaller

corpus, we use an ensemble learning method known as a random forest (Breiman, 2001).

Traditionally, a random forest is a classification method based on creating a collection of

decision trees at training time. Each decision tree is only trained on a subset of the features

52

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Rh
o

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Rh
o

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ta
u

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ta
u

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

r_
W

 0

 5

 10

 15

 20

 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

iat
ion

Number of notes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

r_
W

Spearman's rho, joint and conditional models

Kendall's tau, joint and conditional models

r_W, joint and conditional models

τ ∈ [0.64, 1.0]τ ∈ [0.59, 1.0]

ρ ∈ [0.82, 1.0]ρ ∈ [0.77, 1.0]

r_W ∈ [0.86, 1.0]r_W ∈ [0.82, 1.0]

Figure 5.2: Heatmaps of the ranking correlation coefficients. Darker areas (closer to 1) indi-
cate combinations of number of notes (n) and standard deviation (σ) where the experiment
produced a new ranking (using the independence assumption) similar to the original ranking.
Note that the color scale begins at 0.5, even though the coefficients’ theoretical minimum is
−1.

53

available. The output of the random forest is normally the mode of the output of each

individual tree, but we counted the frequencies of the outputs of all the trees and normalized

them into a probability distribution instead (Provost and Domingos, 2003).

It is straightforward to use random forests for obtaining estimates for the probabilities

comprising the conditional triangle distribution P (C | L,R): we use features of the left and

right endpoints to predict features of the middle point. Recall that in general, supervised

learning techniques use a training set consisting of (x, y) pairs to learn a generalized function

f that can predict a value for y for a previously-unseen value for x. As an example, in a

simplistic model where we consider pitch as the only feature, our training set would consist

of triangles taken from the corpus of analyses, transformed so that the left and right pitches

for each triangle become the x-value, and the center pitch becomes the y-value. The random

forest algorithm would process this data set and output a collection of decision trees where

each tree could be treated as a function that would accept two pitches as input (L and R)

and output a third pitch (C) as a prediction of the most likely middle pitch for the triangle.

It is a simple mathematical calculation to then process the output of each tree for a given L

and R to obtain a probability distribution over values of C.

Considering a single feature per triangle endpoint, however, will not give us the robust

classifier that we desire: we want to incorporate more features, such as harmonic and metrical

information, as we suspect these factors play a role in the Schenkerian analysis process.

However, asking each individual decision tree in a random forest to predict multiple features

in the output leads to another curse of dimensionality situation. Therefore, we will factor

the conditional model using the rules of conditional probability. Assuming the features of

note C — the note the random forest is trying to learn a probability distribution over — are

denoted C1 through Cn, we can rewrite P (C | L,R) as

54

P (C | L,R) = P (C1, C2, . . . , Cn | L,R)

= P (C1 | L,R) · P (C2, C3, . . . , Cn | C1, L,R)

= P (C1 | L,R) · P (C2, | C1, L,R) · P (C3, C4, . . . , Cn | C1, C2, L,R)

= P (C1 | L,R) · P (C2, | C1, L,R) · · ·P (Cn | C1, . . . , Cn−1, L,R). (5.1)

This formulation allows us to model each feature of the note using its own separate random

forest. We chose six features to use for the middle note C:

• C6: The scale degree (1–7) of the note.

• C5: The harmony present in the music at the time of the note, represented as a Roman

numeral I through VII.

• C4: The category of harmony present in the music at the time of the note, represented

as a selection from the set tonic (any I chord), dominant (any V or VII chord), pre-

dominant (II, II6, or IV), applied dominant, or VI chord. (Our data set did not have

any III chords.)

• C3: Whether the note is a chord tone in the harmony present at the time.

• C2: The metrical strength of the note’s position as compared to the metrical strength

of note L.

• C1: The metrical strength of the note’s position as compared to the metrical strength

of note R.

Note that the features are labeled C6 through C1; this ordering is used to factor the model

as described in Equation 5.1. This ordering of the features is used because the features convey

more specific musical information as one moves from from C1 to C6, and therefore it makes

55

sense to allow the more specific features extra training information from the less specific

features.

We also used a variety of features for the left and right notes, L and R. These were:

• The scale degree (1–7) of the notes L and R (two features).

• The melodic interval from L to R, with intervening octaves removed.

• The melodic interval from L to R, with intervening octaves removed and intervals

larger than a fourth inverted.

• The direction of the melodic interval from L to R; i.e., up or down.

• The harmony present in the music at the time of L or R, represented as a Roman

numeral I through VII (two features).

• The category of harmony present in the music at the time of L or R, represented as

a selection from the set tonic, dominant, predominant, applied dominant, or six (two

features).

• Whether L or R was a chord tone in the harmony present at the time (two features).

• A number indicating the beat strength of the metrical position of L orR. The downbeat

of a measure is 0. For duple meters, the halfway point of the measure is 1; for triple

meters, the one-third and two-thirds points are 1. This pattern continues with strength

levels of 2, 3, and so on (two features).

• Whether L and R are consecutive notes in the music.

• Whether L and R are in the same measure in the music.

• Whether L and R are in consecutive measures in the music.

56

When L or R correspond to either the Start or Finish vertices, most of these features

do not make sense because they can only be calculated for actual notes. In those situations,

a special value (e.g., invalid) is used as the value of the feature.

Random forests can be customized by controlling the number of trees in each forest,

how many features are used per tree, and each tree’s maximum depth. Through trial and

error, we settled on forests containing 1,000 trees with a maximum depth of four. We used

Breiman’s original idea of choosing a random selection of m = int(log2M + 1) features to

construct each individual tree in the forest, where M is the total number of features available

to us. In our case, M = 16, so m = 5.

In the next chapter, we illustrate how to use this model to construct a class of algorithms

that can analyze music in a hierarchical manner.

57

CHAPTER 6

ALGORITHMS FOR MUSIC ANALYSIS

In the previous chapters we explored the MOP representation of music analysis and a

probabilistic model for determining the likelihood that a given MOP corresponds to a correct

hierarchical music analysis. In this chapter, we present a variety of algorithms for efficiently

searching the space of possible MOP analyses to determine both the most probable analysis

and a probability ranking over all analyses.

6.1 A probabilistic grammar approach

Some previous studies in algorithms for automatic music analysis reference the concept

of “parsing” music, mirroring the similar concept in natural language processing of parsing

sentences (Bod, 2001; Marsden, 2005a; Gilbert and Conklin, 2007; Marsden and Wiggins,

2008). Parsing algorithms usually are designed to work with a particular class of languages

in the Chomsky hierarchy: a hierarchy of language classes where each class is associated

with a particular kind of formal grammar.

A formal grammar consists of a set of symbols, divided into terminal symbols (or just

terminals), and non-terminal symbols (or just non-terminals), a set of production rules, and

a start symbol. Each production rule allows a string of symbols that fit a certain pattern to

be replaced by a different string of symbols. A string s is derivable in a formal grammar if

one may begin with the start symbol, follow some sequence of production rules, and arrive

at the given string s. The set of all strings derivable within the confines of a formal grammar

constitute that grammar’s language.

58

A commonly-used class of formal grammars for music parsing systems are the context-

free grammars, or CFGs. CFGs are popular for parsing music because they permit a wide

variety of hierarchical musical constructs to be easily represented within the production rules

of the grammar. Every production rule in a CFG must be of the form A → b, where A is

a single non-terminal and b is any string of terminals and non-terminals. Rules following

this pattern are called context-free is because no context (additional symbols) are permitted

around non-terminal A in the rule, and therefore surrounding symbols in the string cannot

govern which rules are appropriate to be used at certain times and which ones are not.

A parse tree for a context-free grammar illustrates how a sentence conforms to the rules

of the grammar. Production rules of the form A→ b are illustrated by non-leaf nodes labeled

with the non-terminal A which branch into each component of the string b. Figure 6.1 shows

how a parse tree for how the sentence “John hit the ball” is understood.

S

N VP

John

V NP

D N

ball.thehit

Figure 6.1: A parse tree for the phrase “John hit the ball.” The non-leaf nodes each are
labeled with a non-terminal. The labels on the immediate children of non-leaf nodes describe
the production rule used at the parent node. For instance, the root node S was expanded
using the production rule S → N -VP . (A sentence is composed of a noun followed by a verb
phrase.)

The production rules of some context-free grammars may permit a sentence to be parsed

in more than one way; that is, there may be more than one parse tree that can be found for

a single sentence that obeys the production rules of the grammar. A CFG by itself, however,

59

has no intrinsic method for discriminating between multiple valid parses of the same string,

i.e., determining which one is a “better” parse.

A common strategy that is used when one needs to determine the best parse among a

set of candidate parses for a single sentence is to use a probabilistic context-free grammar, or

PCFG. A PCFG is a CFG where each production rule is associated with a probability. The

probability for a rule A → b can be interpreted as the probability that non-terminal A will

be expanded into the string b when A is encountered during a parse; that is, P (A→ b | A).

This is a probability distribution, therefore
∑

b P (A→ b | A) = 1.

Given a string S and a parse tree T , the probability that T is an appropriate parse of S

is defined to be the product of the probabilities attached to the n rules used in T :

P (T | S) =
n∏

i=1

P (Ai → bi | Ai).

Therefore, the most probable parse tree for S is the one among all the parse trees which

yield string S that also maximizes the expression above.

We can use the PCFG formalism to find the most probable MOP for a given piece of

music by relying on two relationships between MOPs and formal grammars. First, the one-

to-one correspondence between a MOP and a binary interval tree allows us to re-interpret

the latter as a parse tree. Second, our independence assumption from Chapter 5 that allows

us to state that the probability of a MOP analysis is equal to the product of the probabilities

of the individual triangles within the MOP is the same assumption that is used in deriving

the expression above: that the probability of using each individual production rule does not

depend on using (or not using) any other production rules.

We will illustrate the correspondence between MOPs and parse trees with an example

from earlier in this dissertation. Consider the melodic passage from Chapter 3, presented

here as Figure 6.2: a descending five-note melodic line from D down to G, interpreted as

60

outlining a G-major chord. This passage, when structured as a binary tree of intervals, would

appear as in Figure 6.3. Each non-leaf node in this tree can be interpreted as a production

rule at work, similarly to how we interpret Figure 6.1. For instance, the root node with

its left and right children corresponds to the production rule D–G → (D–B)(B–G). The

probability attached to this production rule corresponds to the probability learned for the

triangle D–B–G (see Figure 6.4) through the techniques described in the previous chapter.

Therefore, the probability that Figure 6.3 is the correct musical parsing of the phrase D–C–

B–A–G is the product of the three probabilities corresponding to the three prolongations in

the tree.

!"# !! !!!
D C B A G

Figure 6.2: An arpeggiation of a G-major chord with passing tones.

D–G
D–B B–G

D–C C–B B–A A–G

Figure 6.3: The prolongational hierarchy of a G-major chord. Each use of a production rule
corresponds to a non-leaf node and its two children.

D G
B

C A

Figure 6.4: The prolongational hierarchy represented as a MOP. Each use of a production
rule corresponds to a triangle.

61

6.2 The ParseMOP algorithm

We have a created an algorithm that can accept a monophonic string of notes as input

and produce the most probable MOP analysis according to the formula above. The algorithm

is based on the CYK algorithm used to parse CFGs, adapted to both (1) take probabilities

into account, and (2) permit ranking the parses efficiently rather than just finding the single

most probable parse (Jurafsky and Martin, 2009; Jiménez and Marzal, 2000). The traditional

CYK algorithm is based around parse trees, but because we use the MOP representation,

our version of the algorithm, called ParseMop, is structured as a search for an optimal

polygon triangulation, which the reader will recall is an equivalent way of interpreting a

MOP analysis.

ParseMop uses dynamic programming to optimally triangulate successively larger sec-

tions of the MOP. The algorithm maintains two counters, i and j, which correspond to notes

of the input music, as well as vertices on the perimeter of the MOP polygon. ParseMop

attempts to find the most probable way to triangulate the sub-polygon formed by the ver-

tices i, i + 1, . . . , j, assuming that the all the notes between i and j must be produced by a

sequence of production rules beginning from a non-terminal N . This is done by searching

through all possible notes k between i + 1 and j − 1, and all production rules of the form

N → AB where A and B are either terminals (i.e., notes), or other non-terminals. There is

one production rule for every possible combination of parent interval N and child intervals

A and B as determined by the input music. These rules are not explicitly stored in mem-

ory; instead, probabilities are computed on the fly by using the appropriate random forest

ensemble classifiers as described in Chapter 5. The parse with the highest probability is

recorded in a table T indexed by i, j, and N . Figure 6.5 shows the dynamic programming

formulation used by ParseMop.

62

T[i][j][N] =


1 if j − i = 1 and N → ij is a valid production rule

0 if j − i = 1 and N → ij is not a valid production rule

max
∀k∈[i+1,j−1]
∀N→AB

(
T[i,k,A] · P (N → AB | N) · T[k,j,B]

)
if j − i ≥ 2.

Figure 6.5: The dynamic programming formulation used by ParseMop.

An example

Suppose ParseMop is given the sequence of notes B–C–B–A–G to analyze, as shown

in Figure 6.6. We make two simplifying assumptions for this example. First, we will not

use the Start and Finish pseudo-events because disregarding them limits the number of

possibilities for prolongations we will need to consider; and second, we will not be concerned

with finding an appropriate Urlinie for this example. ParseMop identifies the Urlinie of a

musical excerpt by using additional production rules (described later in this chapter), and

dispensing with this allows us to simplify table T to use only two dimensions, rather than

three.

c � ���� �
Figure 6.6: An example five-note sequence used as an example for ParseMop.

The probability distributions needed for this example are shown in Table 6.1. The table

does not show all of the individual probabilities involved in each distribution, but rather

only the ones necessary for this example.

ParseMop begins by creating five vertices, v0 through v4, corresponding to the five notes

in the B–C–B–A–G pattern. Table T, which begins empty, is gradually filled by ParseMop

in order to calculate the most probable MOP over all the vertices v0, . . . , v4; this is done by

63

P (C | B, G) = 0.1
P (B | B, G) = 0.2
P (A | B, G) = 0.5
P (B | C, G) = 0.2
P (A | C, G) = 0.2
P (B | B, A) = 0.15
P (C | B, A) = 0.1
P (C | B, B) = 0.5
P (B | C, A) = 0.5

Table 6.1: The probability distributions used in the ParseMop example.

finding the most probable MOPs for increasingly-larger sub-ranges of vertices. ParseMop

begins by examining pairs of adjacent vertices, then finds the most probable MOP over all

sub-ranges of three vertices, then four vertices, then five.

First, ParseMop assigns a probability of 1 to T[0,1], T[1,2], T[2,3], and T[3,4],

corresponding to the musical intervals between vertices v0–v1, v1–v2, v2–v3, and v3–v4. The

dynamic programming formulation (see Figure 6.5) uses a probability of 1 for all intervals

between consecutive notes in the music: such intervals are necessarily at the lowest level of

the musical hierarchy and cannot have any prolongations below them.

Second, ParseMop examines all spans of three consecutive vertices. For v0–v2 (the notes

B–C–B at the beginning of the music), there is only one possible middle note, namely v1,

so because we know that P (C | B, B) = 0.5, the dynamic programming formulation tells

ParseMop to store 0.5 in T[0,2]. Similarly, ParseMop assigns 0.5 to both T[1,3] and

T[2,4] as well because P (B | C, A) = P (A | B, G) = 0.5.

Third, ParseMop considers all spans of four consecutive vertices. For v0–v3, the al-

gorithm must choose either v1 (C) or v2 (B) as the best middle note. Selecting v1 as the

middle note results in a probability of 1 · 0.1 · 0.5 = 0.05, whereas selecting v2 as the middle

note results in a probability of 0.5 · 0.15 · 1 = 0.075. Because 0.075 > 0.05, ParseMop

chooses v2 as the preferable middle note for the interval v0–v3, and assigns 0.075 to T[0,3].

64

When examining the range v1–v4, both middle note possibilities v2 and v3 result in the same

probability of 0.1, so ParseMop will select the earlier note, v2 (A).

The last step is for ParseMop to consider all spans of five consecutive vertices, of

which there is only one, the entire musical span v0–v4. There are three possible middle

notes, and the maximum probability is obtained by choosing v2 (B), for a probability of

0.2 · 0.5 · 0.5 = 0.05.

The completed table T for this example is shown in Figure 6.7. Entries in the table

show, for each span of vertices vi–vj, the maximum probability p obtainable from choosing

a middle note to prolong that span of vertices, and the subscript m of the middle note itself

that leads to that probability. Figure 6.8 shows the most probable MOP for our musical

sequence B–C–B–A–G, along with the other four possible MOPs that have lower overall

probabilities.

0

1 2 3 4

1

2

3

p = 1

p = 1

p = 1

p = 1

p = 0.5
m = 1

p = 0.5
m = 2

p = 0.5
m = 3

p = 0.075
m = 2

p = 0.05
m = 2

p = 0.1
m = 2

j

i

Figure 6.7: The complete table of partial MOP probabilities computed by ParseMop during
the example.

65

B G
B

C A

B G
A

C
B

B G

A
C

B

B G
A

C
B

B G

A

C
B

0.2
0.5 0.5

0.5 0.1
0.1 0.2

0.50.5

0.5 0.1
0.2

0.50.5
0.15

probability = 0.025 probability = 0.01

probability = 0.0375 probability = 0.01

probability = 0.05

Figure 6.8: The five MOPs possible for the musical sequence B–C–B–A–G and their corre-
sponding probabilities.

The full implementation of ParseMop runs in O(n3) time, where n is the number of

input notes, as the algorithm requires three nested loops: one each for i, j, and k. There

is a fourth nested loop to examine each production rule N as well, but as the number of

production rules does not depend on the input size, we do not include it in our complexity

calculation.

We examined three variations of the ParseMop algorithm that use slightly different

sets of production rules: the differences all relate to how the “upper levels” of the musical

hierarchy — the Urlinie and any initial ascents or arpeggiations — are parsed.

The first variation, known as ParseMop-A, uses the same set of production rules at all

levels of the musical hierarchy. This set of rules allows any musical interval to be expanded

into any other pair of musical intervals without restriction. Because of the context-free

nature of the grammar and the mechanism of the parsing algorithm, ParseMop-A cannot

force the background structure of the most probable parse to conform to an Urlinie pattern

66

or to any specific contour — the parse cannot discern when it is at the upper levels of the

musical hierarchy and therefore cannot enforce any sort of specific structure at the upper

levels of the hierarchy. Therefore, parses produced by ParseMop-A often fail to find an

Urlinie even when there is one in the ground-truth interpretation of a note sequence.

In contrast, the ParseMop-B algorithm accepts not only a sequence of notes as input,

but also information specifying exactly which notes of the input sequence should be part of

the background structure (Urlinie and any initial ascent or arpeggiation). A set of production

rules enforcing the specific background structure desired is used for each individual piece of

music. Thus ParseMop-B will always find the correct background structure of a piece, but

is only useful in situations where this information is known beforehand.

The ParseMop-C algorithm is a compromise between the A and B algorithms to better

reflect the real-world scenario of being able to identify the contour of the correct background

musical structure for a piece ahead of time but not which specific notes of the piece will

become part of that structure. While the input to ParseMop-B is a sequence of notes, some

of which are specifically identified as belonging to the background structure, ParseMop-

C accepts the same note sequence but along with only the names of the notes, in order,

that belong to the background structure. For example, given the sequence of notes E–F–

D–C–E–D–B–C with the correct background structure underlined, ParseMop-B must be

informed ahead of time that the first, sixth, and eighth notes of the input must appear at

the uppermost levels of the musical hierarchy. ParseMop-C, on the other hand, is provided

only with the information that the background must contain the notes E–D–C in that order,

but will not know which E, D, and C are the “correct” notes.

The traditional probabilistic CYK algorithm is designed only to find the most probable

parse of a sentence. As we would like to produce a list of musically-plausible parses ranked by

descending probability, we need an additional algorithm. Jiménez and Marzal (2000) showed

that it is feasible to obtain this ranked list of parses by augmenting the CYK algorithm with

67

some additional data structures, and also provided an efficient procedure, NextTree, to

iterate through the list without storing all of the possible parses at once. In the next section,

we discuss the qualitative results of applying the ParseMop and NextTree algorithms

to our corpus of data, along with evaluation metrics and quantitative data illustrating the

performance of the three ParseMop variations.

68

CHAPTER 7

EVALUATION

In this chapter, we evaluate the quality of our probabilistic model of music analysis from

Chapter 5 by studying — both qualitatively and quantitatively — the analyses that the

ParseMop algorithm from Chapter 6 produces for the music in our corpus from Chapter

4. We also evaluate the utility of providing ParseMop with prior information about the

structure of the Urlinie. Specifically, we show the results of four experiments, which (a)

quantitatively compare analyses produced by ParseMop to corresponding analyses from

textbooks, (b) show the locations within analyses produced by ParseMop where the al-

gorithm is more likely to make a mistake, (c) illustrate how the accuracy of the analyses

produced by ParseMop changes as one moves through a list of analyses ranked by probabil-

ity, and (d) use experienced music theorists to judge the analyses produced by ParseMop.

Due to the difficulty of finding additional musical excerpts with corresponding analyses to

use as a testing data set, coupled with the small size of the corpus (41 musical excerpts), we

used a leave-out-one cross-validation approach for training and testing in these experiments.

Specifically, for each excerpt in the corpus, we generated a training set consisting of the

music from the other 40 excerpts, trained the probabilistic model on these data, and used

each ParseMop variant to produce a list of the top 500 analyses for the original excerpt

that was left out. The music notation for each excerpt, each excerpt’s textbook analysis,

and all of the ParseMop-produced MOPs, are provided in Appendix A.

As we mentioned in Chapters 1 and 2, even experts in Schenkerian analysis sometimes

disagree on the “correct” analysis for a composition. It is therefore possible to have more

69

than one musically-plausible hierarchical analysis of an excerpt; occasionally these various

analyses will differ radically in their hierarchical structures. However, due to limited data,

our experiments rely on using a single textbook analysis as ground truth. This sometimes

leads to ParseMop finding alternative correct analyses that are not counted as such in the

purely quantitative experiments. One example of this phenomenon is revealed in our last

experiment which uses humans to judge the ParseMop analyses.

Through all of these experiments, we demonstrate that

• analyses produced by ParseMop by using the probabilistic MOP model and varying

amounts of prior knowledge about the Urlinie achieve average accuracy levels between

64% and 90% (using one accuracy metric), whereas an analysis generated uniformly at

random would only achieve an accuracy level of 22%,

• the locations of errors in the most-probable ParseMop analyses are correlated with

the musical texture of the excerpt and the ParseMop variant used, and

• on average, according to human music theorists, ParseMop-produced analyses are

only between half a letter and a full letter grade worse than expert-produced analyses,

on an A–F scale.

7.1 Evaluation metrics

We use two similar evaluation metrics for determining the accuracy of a ParseMop

analysis. In natural language processing systems that produce parse trees as output, the

traditional methods for computing the accuracy of a candidate parse tree is to compare it

against a reference parse tree. Specifically, one counts the number of internal nodes of the

candidate parse tree that are identical (in both content and location) with internal nodes

in the reference parse tree. For comparing a candidate MOP against a reference MOP, the

equivalent procedure is to count the number of triangles in a ParseMop-produced MOP

70

analysis for which there is an identical triangle in the corresponding textbook MOP analysis.

Therefore, we will define the triangle accuracy of a candidate MOP as the percentage of

triangles in the candidate MOP that match with a triangle in the equivalent textbook MOP:

TriangleAccuracy(M) =
of correct triangles in candidate MOP M

of total triangles in textbook MOP for M

In addition, we can compute this accuracy metric based on corresponding edges between

the candidate and reference MOPs rather than entire triangles. The necessity for an ad-

ditional metric is made clear by the situation illustrated in Figure 7.1, where two MOPs

share an internal edge, indicating a melodic connection between two non-adjacent notes.

However, if one of the MOPs is denoted the candidate MOP and the other the reference

MOP, the triangle-based accuracy metric is zero because the two MOPs have no triangles

in common, an overly harsh judgement that neglects the internal edge that the two MOPs

have in common (edge 2–5). Therefore, we will also report the fraction of internal edges that

match between the candidate and references MOPs.

61

5
2

4
3

61

5
2

4
3

Figure 7.1: These two MOPs share no common triangles, yet have an interior edge in com-
mon. The edge 2–5 in both MOPs indicates that the motion from note 2 to note 5 is
important melodically, and even though both MOPs contain this edge, a triangle-based
accuracy metric will report an accuracy of zero.

Calculating triangle or edge accuracy from a candidate MOP and a reference MOP is

straightforward except for the possibility of untriangulated subregions inside the reference

71

MOPs (candidate MOPs produced by ParseMop are always fully-triangulated). To handle

this situation, we will modify our definitions for “correct” triangles and edges as follows. A

“correct” triangle in a candidate MOP is a triangle that either (1) matches exactly with a

triangle in the reference MOP, or (2) could fit in an untriangulated area of the reference

MOP. In other words, triangles are correct if they appear in the reference MOP or could

hypothetically appear, if the reference MOP were completely triangulated. Correct edges

are defined analogously.

While it may seem that compensating for untriangulated regions in this fashion could

distort accuracy statistics, we take this into account by providing a randomized reference

triangulation that is scored in the same manner, providing a baseline level of accuracy for

comparison. Furthermore, discounting triangles from each excerpt’s Urlinie (whose special

handling for evaluation is described in the next section), untriangulated regions account for

only 183 of the 907 triangles in the corpus (about 20%).

7.2 ParseMOP accuracy

Figures 7.2 and 7.3 show the triangle- and edge-based accuracy metrics calculated for

each of the three ParseMop variants (A, B, and C). Three points are plotted for each

excerpt of music, showing the accuracy level as a number between 0 and 1 — the fraction of

triangles or edges deemed correct — for each ParseMop variant. The gray horizontal bars

for each excerpt show a baseline level of accuracy that could be obtained by a hypothetical

triangulation algorithm that operated randomly. That is, the baseline accuracy is the aver-

age accuracy for all possible triangulations of the excerpt (this quantity can be calculated

analytically, without resorting to sampling, by using the mathematical ideas from Chapter

3.) In the figure, filled-in shapes are used for each point where the difference between the

ParseMop accuracy and the baseline accuracy is statistically significant at the 0.05 level.

72

p-values were calculated using individual binomial tests under the null hypothesis that the

ParseMop accuracies did not differ significantly from the baseline accuracy.

Recall that the three ParseMop variants use different levels of a priori information

to do their work: ParseMop-A uses no extra information, ParseMop-B is provided the

exact positions of the notes of the background structure, and ParseMop-C is given only

the pitches and relative ordering of the background structure’s notes, but not the notes’

exact positions. Therefore, because ParseMop-C is a “compromise” between the no-extra-

information-given ParseMop-A and the big-head-start-given ParseMop-B, one would ex-

pect to see this reflected in the graphs by having the accuracy level for ParseMop-C on a

given excerpt of music be between the levels obtained from ParseMop-A and ParseMop-

B, and indeed, this is the case for a large number of pieces. In the graphs, this situation

is visually depicted by the points shown as circles (ParseMop-C) being located between

the points shown as left- and right-pointing triangles (ParseMop-A and ParseMop-B).

However, there are some situations where ParseMop-C performs worse than ParseMop-

A. One reason for this is the evaluation metrics for ParseMop-C (and ParseMop-B) use

a ground-truth MOP that has the upper-level melodic structure (the Urlinie) completely

triangulated. This triangulation, however, is produced algorithmically because the textbook

analyses do not contain any information on how the Urlinie should be triangulated (this

information is typically not illustrated at all in Schenkerian notation). Furthermore, the

algorithmic triangulation does not necessarily correspond to the “correct” musical interpre-

tation of the hierarchy of the notes within the Urlinie, however, the algorithm does ensure

that musically-similar background structures will have similar triangulations in the corpus,

thereby assisting the machine learning algorithm.

More specifically, there are certain pairs of Urlinie patterns that are used to analyze

consecutive musical phrases that function together. These patterns are used when the first

phrase is analyzed as a descent from the first note of the Urlinie but ends one note before

73

0.0 0.2 0.4 0.6 0.8 1.0

bach1
bach2
bach3

handel1
haydn1
haydn2
haydn3
haydn4
haydn5
haydn6
haydn7

clementi1
mozart1
mozart2
mozart3
mozart4
mozart5
mozart6
mozart7
mozart8
mozart9

mozart10
mozart11
mozart12
mozart13
mozart14
mozart15
mozart16
mozart17
mozart18

beethoven1
beethoven2
beethoven3
beethoven4
beethoven5

schubert1
schubert2
schubert3
schubert4

chopin1
chopin2

Accuracy of Algorithm A

Accuracy of Algorithm B

Accuracy of Algorithm C

Baseline accuracy of a randomly-selected MOP

Figure 7.2: Triangle accuracy for the three ParseMop variants.

74

0.0 0.2 0.4 0.6 0.8 1.0

bach1
bach2
bach3

handel1
haydn1
haydn2
haydn3
haydn4
haydn5
haydn6
haydn7

clementi1
mozart1
mozart2
mozart3
mozart4
mozart5
mozart6
mozart7
mozart8
mozart9

mozart10
mozart11
mozart12
mozart13
mozart14
mozart15
mozart16
mozart17
mozart18

beethoven1
beethoven2
beethoven3
beethoven4
beethoven5

schubert1
schubert2
schubert3
schubert4

chopin1
chopin2

Accuracy of Algorithm A

Accuracy of Algorithm B

Accuracy of Algorithm C

Baseline accuracy of a randomly-selected MOP

Figure 7.3: Edge accuracy for the three ParseMop variants.

75

the end of the Urlinie, creating a situation called an interruption: the Urlinie has seemingly

terminated early. However, the second phrase is analyzed by “restarting” the Urlinie and

having it continue to its natural conclusion. Consider the musical phrase in Figure 7.4; this

can be an interpreted as an Urlinie descending from the fifth note of a musical scale down

to the first. Consider a musical phrase that descends from D down to A, then restarts at D

and descends again all the way to G. The initial pseudo-ending on A interrupts the natural

descent of the melody, creating tension that is only resolved after the whole phrase repeats

and completes the descent to G.

!"# !! !!!
D C B A G

Figure 7.4: An arpeggiation of a G-major chord, now interpreted as an Urlinie. An inter-
ruption occurs when a musical phrase descends from D to A, then restarts and re-descends
from D to G.

From a hierarchical standpoint, an interruption presents a representational challenge

because the second-to-last note of the Urlinie — the A in Figure 7.4 — contains a great deal

of melodic tension because its function is to move from the B to the G, where the tension

is resolved. As the first phrase (the interrupted phrase) is usually melodically similar to

the second phrase (the completed phrase), we would want the MOPs representing the two

phrases to be similar because we would want the machine learning algorithm to identify the

structural similarities between the two phrases. However, this is impossible with the missing

G in the first phrase. Therefore, in order to maintain similar hierarchical representations

of the first and second melodic descents, we chose to triangulate the Urlinie in a MOP

according to the order of the notes rather than the true hierarchical structure. This allows

76

for the four-note descent D–C–B–A of the first phrase to be represented exactly the same

way as the first four notes of the complete five-note pattern of the second phrase.

Because the ParseMop-B and -C algorithms are given a priori information about the

Urlinie of the music in question, these algorithms will always produce an analysis with an

Urlinie that matches the textbook Urlinie exactly (ParseMop-B) or at least in melodic

contour (ParseMop-C). Therefore, it is straightforward to compare such an analysis against

the textbook analysis, as both will have an Urlinie triangulated according to the same

algorithmic pattern. ParseMop-A, however, is not given information about the Urlinie, and

therefore will only find one purely by chance. As a result, it is unfair to compute the accuracy

of a ParseMop-A analysis by comparing it against a textbook MOP with an algorithmically-

triangulated upper region, because any accuracy judgements for triangles or edges in that

region would have no musical interpretation. Therefore, when computing accuracies for

ParseMop-A analyses, we chose to compare against a textbook MOP with an untriangulated

Urlinie region. The effect of this is any time a ParseMop-A analysis places a note of the

Urlinie at a sufficiently high enough level of its hierarchy, it will likely be rewarded with either

a correct edge or triangle determination. While this may be a less than perfect solution, it

is decidedly better than arbitrarily rewarding or penalizing the ParseMop-A analyses as

would happen if compared against textbook MOPs with algorithmically-triangulated Urlinie

regions. Furthermore, the random baseline accuracy is computed in this same fashion,

allowing for comparisons.

Discussion

There is a great deal of variance in the accuracy of the ParseMop algorithms: variance

in how well each algorithm performs individually on different pieces, and also in how each

of the three algorithm variants performs on the same piece.

77

A common cause of poor accuracy is repeated pitches in the input music. Often these

repeated pitches are instances of the same musical idea being decorated with intervening

notes. While the ParseMop algorithms will often correctly identify that the decorative

notes are subservient to the surrounding notes, confusion arises when ParseMop must

relate the repeated pitches to each other; sometimes there is no clear choice regarding which

pitch should appear at a more abstract level of the hierarchy.

An example of this confusion occurs in the “mozart17” excerpt, shown in Figure 7.5,

along with the corresponding textbook and ParseMop-C analyses. Notice that the pitches

of the Urlinie (the beamed notes in the algorithmic output) are the same in both analyses,

and differ only in which E is identified as the “correct” one. The confusion arises here from

the arpeggiations of the dominant (V) and tonic (I) chords in the music: there are many

repeated pitches with no immediately obvious hierarchical structure among them, including

four instances of E in the first four measures. A human analyst would likely collapse the

arpeggiations into block chords (as in the bass) and identify the multiple implied voices, but

ParseMop cannot do this; instead, the algorithm must choose a single E to be part of the

main melody. The G that begins the excerpt and reoccurs throughout the music also causes

problems for ParseMop as it is uncommon to have the Urlinie (in this case the pitches

E–D–C) appear below a harmonizing voice; usually the Urlinie is the top-most voice in the

music.

7.3 Error locations

In addition to studying what kinds of errors ParseMop makes, it is worthwhile to iden-

tify where the errors are being made. In other words, we would like to know if ParseMop

is making more mistakes at the surface level of the music or at the more abstract levels.

We can quantify the notion of “level” by numbering the interior edges of a candidate MOP

produced by ParseMop with increasing integers starting from zero, with zero correspond-

78




34

34



 
 

   
   
      

 
       


    

I

!!!!!!!!!! !!!!!!!!
V

!!" !!!! !!!!!! !!!!
C: I

!!!! !!!! !!!!!!! !!!!!!!!!!!! !!!!!
V

!!! !!!!!!!
IC:

! !!!
V
!!!!" !

V

!!!!!!!!! !!!! !!!
I
!!!!!!!!! !!!!!

!!! !!!!!!!
IC:

! !!!
V
!!!!" !

V

!!!!!!!!! !!!! !!!
I
!!!!!!!!! !!!!!

Figure 7.5: Excerpt of Mozart, KV 103, No. 1, Trio (mozart17), along with the textbook
and ParseMop-C analyses of the first four measures.

ing to the most abstract interior edge. Perimeter edges are not assigned a level because all

such edges represent either connections between adjacent notes in the input music, or the

connection between the Start vertex and the Finish vertex; in both cases, these edges are

always present in any MOP and therefore cannot be in error. These integers correspond to

the standard idea of vertex depth in a tree, and therefore can be regarded as edge depths.

We will normalize the edge depths of a MOP by dividing each integer assigned to an edge by

the maximum edge depth within the MOP, giving an error location always between 0 and

1, with 0 corresponding to the most abstract edges, and 1 corresponding to those closest to

the musical surface.

Figure 7.6 shows the probability for the three ParseMop variants to include an incorrect

edge at different normalized error depths. Unsurprisingly, the probability of making an

error at the most abstract level corresponds exactly to how much extra information the

ParseMop variant is given about the contour of the main melody of the musical excerpt in

question: ParseMop-B has the lowest probability for an error at depths between 0.0 and

0.2, while ParseMop-A has the largest. Unsurprisingly, this then skews the error locations

for ParseMop-B to the lower depths between 0.6 and 1.0, while variants A and C maintain

79

much flatter contours. We suspect the preponderance of errors at the middle depths for

variants A and C occurs for a few reasons. First, fewer errors likely occur at the less abstract

musical levels (closer to 1.0) because the surface-level music is simply easier to analyze. This

is the level where it is easiest to hear the elaborations present in the music as they take

place over shorter time spans and often involve only a single harmony. Such elaborations are

studied by undergraduates in their first year of music theory and are usually uncomplicated

in their presentations.

0.0 0.2 0.4 0.6 0.8 1.0
Error location

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
se

e
in

g
 a

n
 e

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0
Error location

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
se

e
in

g
 a

n
 e

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0
Error location

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
ili

ty
 o

f
se

e
in

g
 a

n
 e

rr
o
r

Figure 7.6: Histogram showing the locations of errors for the three ParseMop variants over
all excerpts in the corpus.

On the other hand, the smaller probability of making a mistake at the highest levels of

abstraction for ParseMop-A and -C we speculate to be for different reasons. Recall that

the evaluation procedure for ParseMop-A uses an untriangulated upper region for the most

abstract main melody notes, which naturally leads to fewer errors as there are fewer edges

with which to find conflicts. However, the ParseMop-C algorithm is given the basic melodic

contour ahead of time, and this information also reduces high-level errors. ParseMop-A

and -C likely have the most probability density in the middle areas of the graph because

these areas are the most difficult to analyze: one cannot use the desired upper-level melodic

80

contour as a goal, nor does one have the benefit of making the simpler analytic decisions

present at the surface-level.

Is is instructive to examine the depths of the edges in error on a per-excerpt basis. Table

7.1 shows, for each excerpt and ParseMop variant used, where the errors occur in the

top-ranked analysis produced by the algorithm on the excerpt. The small histograms in

the table can be interpreted similarly to the probability density diagrams in Figure 7.6: the

x-axis ranges from 0 to 1 and describes the edge depth where the edge errors are occurring,

with 0 meaning the most abstract levels of the hierarchy and 1 meaning the least abstract.

The height of each bar describes how many errors are occurring at each level. The heights of

the bars can be compared across the three ParseMop variants within each musical excerpt,

but not across excerpts.

The table also gives the percentage that the accuracy increased when each analysis pro-

duced by ParseMop is compared to the average accuracy of a randomly-selected analysis

(“% Improve”), normalized so a score of 0 corresponds to an accuracy level that is no better

than random, and 1 corresponds to a perfect analysis (note that improvement scores of 1

correspond to blank histograms because there are no errors to show). Thus, a score of 0.5

indicates that the ParseMop improved 50% of the way from a randomly-selected analysis

to a perfect analysis.

Table 7.1: Edge accuracy improvement over random and error locations for each excerpt.

ParseMop-A ParseMop-B ParseMop-C

Excerpt % Improve Errors % Improve Errors % Improve Errors

bach1 0.58 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.88 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.56 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

bach2 0.86 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.86 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.45 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Continued on next page

81

Table 7.1 — continued from previous page

ParseMop-A ParseMop-B ParseMop-C

Excerpt % Improve Errors % Improve Errors % Improve Errors

bach3 0.44 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.76 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.20 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

handel1 0.40 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.79 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.58 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

haydn1 0.48 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.74 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.31 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

haydn2 0.34 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.82 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.34 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

haydn3 0.89 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.00 0.89 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

haydn4 0.27 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.00 1.00

haydn5 -0.04 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

1.00 1.00

haydn6 0.16 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

1.00 0.52 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

haydn7 1.00 1.00 0.66 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

clementi1 0.51 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.00 1.00

mozart1 0.91 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0.91 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0.91 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

mozart2 0.63 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

0.92 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

0.92 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

mozart3 0.28 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

1.00 0.73 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

mozart4 0.40 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.94 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.82 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

mozart5 0.30 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.92 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

0.34 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

mozart6 0.43 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.71 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.54 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

mozart7 0.62 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

0.87 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

0.43 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

9

mozart8 0.52 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

0.73 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

0.41 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Continued on next page

82

Table 7.1 — continued from previous page

ParseMop-A ParseMop-B ParseMop-C

Excerpt % Improve Errors % Improve Errors % Improve Errors

mozart9 1.00 1.00 1.00

mozart10 0.54 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

0.92 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

0.62 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

mozart11 0.46 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0.91 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0.68 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

mozart12 0.25 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.00 0.00 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

mozart13 -0.09 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.00 1.00

mozart14 0.83 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0.83 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0.66 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

mozart15 1.00 1.00 1.00

mozart16 0.50 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

1.00 1.00

mozart17 0.04 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

0.80 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

0.19 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

mozart18 0.89 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

1.00 0.55 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

8

beethoven1 0.71 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.71 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.63 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

beethoven2 0.72 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.72 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.72 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

beethoven3 0.36 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

1.00 0.74 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

beethoven4 0.57 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

1.00 0.76 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

beethoven5 0.72 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.00 0.72 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

schubert1 0.22 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

1.00 0.29 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

schubert2 0.69 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

0.81 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

0.75 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

schubert3 0.55 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.61 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.29 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Continued on next page

83

Table 7.1 — continued from previous page

ParseMop-A ParseMop-B ParseMop-C

Excerpt % Improve Errors % Improve Errors % Improve Errors

schubert4 0.75 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.00

chopin1 0.45 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

1.00 0.78 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

chopin2 0.56 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0.76 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0.52 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

7.4 Maximum accuracy as a function of rank

So far we only have examined the accuracy of the top-ranked analysis produced by the

ParseMop algorithms for each musical excerpt. However, it is instructive to examine the

accuracies of the lower-ranked analyses as well, in order to investigate how accuracy relates

to the ranking of the analyses. In particular, we are interested in studying the maximum

accuracy obtained among the analyses at ranks 1 through n, where n is allowed to vary

between 1 and 500. We would hope that analyses that are judged as being accurate are not

buried far down in the rankings, especially when the top-ranked analysis is not perfectly

accurate.

Figure 7.7 illustrates how the maximum accuracy changes for each music excerpt as one

moves through the ranked list (exact numbers are provided in Appendix B). A few oddities

in the graphs are worth mentioning. A single musical excerpt appears to present problems for

ParseMop-A; this corresponds to the single line on the ParseMop-A graphs that is clearly

isolated from the other lines on the lower part of the graphs. This is “mozart17,” which was

mentioned earlier in this chapter as being particularly difficult to analyze correctly due to

84

multiple repeated notes and that the Urlinie is hidden in an inner voice. ParseMop-A

repeatedly tries to analyze the main voice of this excerpt to include the upper note G, which

is just an auxiliary note.

On the other hand, “mozart8” is the most difficult for ParseMop-C to analyze: even

when examining the top 500 analyses, the maximum accuracy in that set was only 49% by the

triangle metric. This excerpt, shown in Figure 7.8, is complicated to analyze due to its highly

figurated texture and that the primary notes of the Urlinie are often located on metrically

weak beats, a rather uncommon condition that ParseMop, through its learning capabilities,

tries to avoid. Figure 7.9 illustrates the correct analysis of this excerpt, while Figure 7.10

shows the top-ranked ParseMop-C analysis, clearly locating an incorrect Urlinie, though

analyzing many individual sections of the music correctly.

7.5 Human-based evaluation

While it is useful to examine mathematical accuracy metrics, there is no substitute for

having human evaluations of the ParseMop analyses. In particular, having experienced

music theorists evaluate the analyses is indispensable because humans can make both qual-

itative and quantitative judgements that the accuracy metrics cannot.

For instance, it is certainly the case that some errors in the ParseMop analyses are more

serious than others. However, it is unclear how to invent a weighting scheme to determine

which edges or triangles are more important to an analysis than others. In particular, while

hierarchical level is certainly a contributing factor to the importance of any particular edge or

triangle, mistakes at both the surface and more abstract levels can have large effects on how

a person evaluates an analysis. In other words, the triangle and edge accuracy calculations

will always operate on a prolongation-by-prolongation basis, but a person may opt to make

a more holistic judgement of an analysis.

85

1
5

1
0

5
0

1
0

0
5

0
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M
a
x
 t

ri
a
n
g
le

 a
cc

u
ra

cy
,

P
a
rs

e
M

o
p
-A

1
5

1
0

5
0

1
0

0
5

0
0

M
a
x
 t

ri
a
n
g
le

 a
cc

u
ra

cy
,

P
a
rs

e
M

o
p
-B

1
5

1
0

5
0

1
0

0
5

0
0

M
a
x
 t

ri
a
n
g
le

 a
cc

u
ra

cy
,

P
a
rs

e
M

o
p
-C

1
5

1
0

5
0

1
0

0
5

0
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M
a
x
 e

d
g
e
 a

cc
u
ra

cy
,

P
a
rs

e
M

o
p
-A

1
5

1
0

5
0

1
0

0
5

0
0

M
a
x
 e

d
g
e
 a

cc
u
ra

cy
,

P
a
rs

e
M

o
p
-B

1
5

1
0

5
0

1
0

0
5

0
0

M
a
x
 e

d
g
e
 a

cc
u
ra

cy
,

P
a
rs

e
M

o
p
-C

F
ig

u
re

7.
7:

M
ax

im
u
m

ac
cu

ra
cy

as
a

fu
n
ct

io
n

of
ra

n
k
.

E
ac

h
gr

ap
h

sh
ow

s,
fo

r
a

p
ar

ti
cu

la
r
P
a
r
se

M
o
p

va
ri

an
t,

h
ow

th
e

m
ax

im
u
m

ac
cu

ra
cy

fo
r

ea
ch

p
ie

ce
of

m
u
si

c
ch

an
ge

s
as

on
e

ex
am

in
es

th
e

ra
n
ke

d
an

al
y
se

s.

86

!

!

!

"

#

$

$%"$

24

24

&
'

&
'

(((((

(

(

((
((((((((

(((

(

((((

(
(((((((((

(((
((((

(

((((

(
(((((((((

((((
((

(

((((((
)

))

Figure 7.8: Excerpt of Mozart, K. 265, Variations on Twinkle, Twinkle Little Star (mozart8).

ZZ ZZZZZZ Z�
ZZZZZZZZZ

IC:

Z Z ZZZZ ZZZZZZZZ

� ZZ������� ZZZZZZZZ ZZZZZ ZZZZZZ ZZZZZZZZZZZZZZZZZZZZ
V

ZZZZZZZZZZZZZ ZZZ
II

ZZZZZZ ZZZZ
I

Z�
ZZ Z

V

ZZ
I

ZZZ ZZZZZZZ
VI

ZZZZZ ZZZZ ZZZZZZZZZZZZ� ZZZZZZZZZ����� ZZZZZZZZZZZZ ZZZZZZZZ ZZZ�Z ZZZZ
IV

ZZZZZZZZZ ZZZ ZZZZZZ������
I

ZZZZZZ ZZ ZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZ

Figure 7.9: Textbook analysis of Mozart, K. 265 (mozart8).

ZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZ
IV

ZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZ��������� ZZ
I

ZZZZZZZZ
�

ZZZZ�� ZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZ
C: I

ZZZZZ ZZZZZZZZZZZZZZZ Z ZZZZZZ ZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZ Z�����ZZZZZZ

ZZ ZZZZ
VI

ZZZZZ
I

ZZZZ ZZZ
V

Z
I

� Z ZZZZ ZZ
IIV

ZZZ ZZZZZ��ZZZZZZ ZZZZZZ ZZZZZ ZZZZZZZZ ZZZZZZZZ

Figure 7.10: ParseMop-C analysis of Mozart, K. 265 (mozart8).

87

Another reason for seeking human evaluations is that accuracy metrics based on compar-

ison against a gold standard will necessarily suffer when there are multiple gold standards.

Specifically, as we mentioned in the beginning of this chapter, it is possible to have more

than one musically-plausible hierarchical analysis of an excerpt. Because a textbook analysis

can only present one perspective, we designed an experiment relying on human judgements

that removes the idea of comparison against a gold standard entirely.

We recruited three expert music theorists to assist with this experiment. All three are

tenured faculty members in music departments at colleges or universities: one at a large

public state university, one at a large private university, and one at a small liberal arts

college.

In the experiment, we asked the experts to grade pairs of analyses. The order of the mu-

sical excerpts in the corpus was randomized and for each excerpt, the graders were provided

with the music notation of the excerpt itself, along with the corresponding ParseMop-C

analysis and the textbook analysis. The graders were not given any information on the

sources of the analyses; in particular, they did not know that the two analyses within each

pair came from very different places. Furthermore, the order in which the two analyses of

each pair were presented on the page was randomized so that sometimes the ParseMop

analysis was presented first and sometimes second. Both analyses were displayed using a

pseudo-Schenkerian notation scheme that uses slurs to illustrate elaborations and beams to

show the notes of the main melody and other hierarchically-important notes; this notation

can be seen throughout the graphics in this chapter. It is important to note that the text-

book analyses were also presented using this notation style; this was done because the output

of the algorithm which translates MOPs to pseudo-Schenkerian notation does not yet rival

the true Schenkerian analytic notation used by humans, and so reproducing the textbook

analyses verbatim would be too revealing to the graders.

88

The graders were instructed to evaluate each analysis the way they would evaluate “a

student homework submission;” the exact text is provided in Figure 7.11. Each grader was

asked to assign a letter grade to each analysis from the set A, A-, B+, B, B-, C+, C, C-, D+,

D, D-, F, according to a grading scheme of their own choosing. The goal of this experiment

was to determine how much the ParseMop-C analyses differ in quality from their textbook

counterparts. Note that Figure 7.11 refers to the graders being provided with “ten” excerpts

of music; each grader was given the 41 excerpts in batches with approximately ten analyses

per batch.

Below are ten excerpts of music from the common practice period, along
with musical analyses of those excerpts. The analyses are supposed to evoke
the style of Schenkerian analysis, though they do not claim to emulate the
process exactly, and therefore do not show all of the traditional Schenkerian
notation.

Each page contains the music of the excerpt itself, along with two separate
Schenkerian-style analyses of the excerpt. (Note that some analyses are on a
single system, while others extend over two systems.)

For each analysis, please evaluate the quality of the music analysis as
you would do if you were evaluating a student homework submission. Please
assign each analysis a grade chosen from the set: A+, A, A-, B+, B, B-, C+,
C, C-, D+, D, D-, F. You have complete control over how you assign grades
to analyses.

Figure 7.11: The directions provided to the human graders for judging pairs of analyses.

Figure 7.12 illustrates how the graders judged the ParseMop-C analyses and the text-

book analyses. For each musical excerpt, the judgements of the three graders are shown as

polygons: filled-in polygons for the textbook grades, and hollow polygons for the ParseMop

grades. A solid line connects the three grades for each excerpt and analysis type.

The data show many interesting situations worthy of further investigation. For instance,

there are times when the three graders give good grades to both the ParseMop and textbook

89

F D C B A
Grade

bach1
bach2
bach3

handel1
haydn1
haydn2
haydn3
haydn4
haydn5
haydn6
haydn7

clementi1
mozart1
mozart2
mozart3
mozart4
mozart5
mozart6
mozart7
mozart8
mozart9

mozart10
mozart11
mozart12
mozart13
mozart14
mozart15
mozart16
mozart17
mozart18

beethoven1
beethoven2
beethoven3
beethoven4
beethoven5

schubert1
schubert2
schubert3
schubert4

chopin1
chopin2

Grader 1, textbook

Grader 2, textbook

Grader 3, textbook

Grader 1, algorithm

Grader 2, algorithm

Grader 3, algorithm

Figure 7.12: Grades assigned by human judges to the textbook analyses and algorithmically-
produced analyses from ParseMop-C.

90

analyses, yet the accuracy metrics from earlier in this chapter judge the ParseMop analysis

as being highly inaccurate. This can be interpreted as ParseMop locating a musically-

plausible “alternate” analysis.

Consider, for instance, the “mozart5” excerpt presented in Figure 7.13. The textbook

and ParseMop-C analyses of this excerpt from Mozart’s Piano Sonata #7 are given in

Figures 7.14 and 7.15. Both analyses feature a clear descent from G down to C — both

identify the G in measure 3 as the primary tone of the Urlinie — but after that, their paths

diverge.











44

44













     

 

 
    

 
   





 
   

  

  

  

 

 


 






Figure 7.13: Excerpt of Mozart, Piano Sonata #7 in C major, K309, I (mozart5)

ZZZZ ZZZZZZZZZZZZZZ ZZZZZZZ Z ZZZZZ� Z
I

�ZZZZZZ
V

ZZZZZZZ ZZZZ
V

ZZZZZZZZ
IC:

Z ZZZZ ��� ZZZZZZ
II

ZZZZZZZ
I

ZZZ ZZZZZZ

Figure 7.14: Textbook analysis of mozart5.

The textbook analysis chooses to analyze the entire timespan of measures 3–5 as an

offshoot of the primary tone G, identifying the melodic descent G–F–E within those measures

91

ZZZZZZZZ ZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZ ZZZZ� Z ZZ
I

��ZZZZZZZZZZZ ZZZ
V

ZZZZZZZ ZZZ
V

Z Z
II

ZZ
I

ZZZ ZZ
IC:

Z Z Z ZZ ZZ ZZZZZZZZZZ ZZZZZZZZ� ZZZZZZZ ZZZZZZZZZZZZZZZZ

Figure 7.15: ParseMop-C analysis of mozart5.

as a descent into an inner voice that then rises back to the G in measure 5. All of measure

6 is analyzed as being derived from the note F in that measure, which is plausible as that

measure is expressing dominant harmony.

In contrast, ParseMop-C identifies the G–F–E pattern in measures 3–5 as the first three

notes of the Urlinie. This results in the notes in measure 6 being analyzed as derived from

the D in that measure, rather than the F, which is seen as an additional voice above the

main melody at that point. We submit that either analysis is plausible in this situation;

there are no major clues in the music that one of the interpretations is preferable.

We can also compare the three graders pairwise to discover patterns in their grading

styles. Figure 7.16 shows six contingency tables illustrating how common it is for a pair

of graders to assign various combinations of grades to the same excerpt. It is clear from

the figure that the textbook analyses are usually given better grades than the ParseMop

analyses: the general clustering is in the upper left corner for the textbook graphs but is

more spread out for the ParseMop graphs. Apparently, not only are there differences in

the way experts analyze music, but there are differences in the way experts evaluate analyses

of music.

If one converts the A–F grades to a standard 4.0 grading scale (A = 4, B = 3, C = 2,

D = 1, F = 0, with a plus adding an additional 0.3 points and a minus subtracting 0.3

points), the average grades assigned to the textbook analyses by the three graders are 3.67,

3.35, and 3.03, respectively, or roughly between a B and just shy of an A-. The corresponding

92

A A- B+ B B- C+ C C- D+ D D- F

Grader 2

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 1
1 vs 2 (textbook)

A A- B+ B B- C+ C C- D+ D D- F

Grader 2

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 1

1 vs 2 (algorithm)

A A- B+ B B- C+ C C- D+ D D- F

Grader 3

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 1

1 vs 3 (textbook)

A A- B+ B B- C+ C C- D+ D D- F

Grader 3

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 1

1 vs 3 (algorithm)

A A- B+ B B- C+ C C- D+ D D- F

Grader 3

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 2

2 vs 3 (textbook)

A A- B+ B B- C+ C C- D+ D D- F

Grader 3

A
A-

B+
B

B-
C+

C
C-

D+
D

D-
F

G
ra

d
er

 2

2 vs 3 (algorithm)

Figure 7.16: Contingency tables for the human evaluations.

93

average ParseMop grades are 2.78, 2.87, and 2.42, or somewhere between a C+ and a B-.

The average differences (the amount the textbook analyses are preferred over the ParseMop

analyses) are 0.89, 0.48, and 0.61, meaning that the graders preferred the textbook analyses

by somewhere between half a letter grade and a full letter grade.

94

CHAPTER 8

SUMMARY AND FUTURE WORK

In this dissertation, we have demonstrated that there are consistent patterns in the

way that people perform Schenkerian analysis, and that it is both feasible and practical to

(a) model the analysis process probabilistically, and (b) analyze new music compositions

using an algorithm derived from the model. In this chapter, we will summarize the major

contributions of this work and discuss the possibilities for future research.

We began with the task of modeling the process of Schenkerian analysis and turned to

maximal outerplanar graphs, or MOPs. We illustrated how this representation can concisely

represent the prolongational structure of a hierarchical music analysis. Next, we augmented

the purely representational MOP structure with a probabilistic interpretation of its con-

struction and illustrated how making a strong assumption about independences among the

probabilities allowed us to develop a computationally-efficient inference algorithm to locate

the most probable MOP. Combining this algorithm with the first computer-interpretable

corpus of Schenkerian analyses, we produced three variants of an algorithm for “parsing”

excerpts of music to identify the most probable analysis using various amounts of a priori

information.

In analyzing these algorithms, we learned that overall, the amount of a priori information

given to the parsing algorithm has a large effect on the errors in the resulting MOP analyses,

and also affects where these errors occur within the analyses. We also learned that the

texture of a musical excerpt can greatly effect parsing accuracy; namely repeated notes,

arpeggiations, and syncopation (important melody notes occurring on weak beats) often

95

lead to mistakes in the analysis. We used three experienced music theorists to grade the

algorithmic output of the parsing algorithms, and we concluded that while each person has

their own idiosyncrasies in their grading methods, the algorithmically-produced analyses

averaged between a C+ and a B-, while the textbook analyses averaged between a B and an

A-.

Our majors contributions are the following:

• A novel probabilistic model used to represent hierarchical music analyses,

• Evidence that making a strong independence assumption about the probabilistic model

does not alter the model’s usefulness in ranking candidate analyses,

• Efficient algorithms for (a) choosing a MOP uniformly at random from all possible

MOPs for a given monophonic note sequence, and (b) iterating through all possible

MOPs for such a sequence,

• The first corpus of computer-interpretable Schenkerian analyses,

• An algorithm for determining the most probable MOP analysis for a given piece of

music, and

• A study using three human judges to determine the quantifiable differences between

human-produced and algorithmically-generated analyses.

This computational model has extensive potential for further research and application.

We suspect the accuracy of the analyses produced by ParseMop could be raised by using a

larger corpus of Schenkerian analyses for training. Though it should not be overlooked that

the corpus created for this project is the first of its kind, it is still small when compared to

other corpora for machine learning, only containing 41 music excerpts and analyses. Because

of the cost of encoding analyses by hand, it is worth investigating if semisupervised or

96

unsupervised learning techniques can be used instead of a purely supervised approach. This

technique has been used before — specifically, using an expectation-maximization algorithm

with unlabeled corpus — to train a grammar for understanding the structure of melodies

(Gilbert and Conklin, 2007).

A natural next step for improving the probabilistic model itself is to include support

for multiple voices. At the moment, the model assumes all of the notes of the input mu-

sic constitute a single monophonic voice; a more sophisticated model capable of correctly

interpreting polyphonic music — music with multiple notes sounding at once — would be

extremely desirable. Many of the errors in the current ParseMop results are due to the

inability of the model to handle multiple simultaneous voices implied through compositional

techniques such as arpeggiation, and therefore a fully polyphonic model is necessary to bring

the model to the next level of musical understanding.

One fascinating application of this model is in the field of algorithmic composition, specifi-

cally, the idea of using the hierarchical structure of a composition to create a musical variation

of the original input music. For a highly-constrained type of composition, such as a Bach

chorale or a Scott Joplin ragtime-style piece, it may be possible to combine the compositional

rules with this probabilistic model to algorithmically compose a variation on a piece of music

in a new style.

Other clear uses of this model include systems that need to calculate metrics for music

similarity, such as applications for music recommendation or new music discovery. There

are also potential uses in intelligent tutoring systems for teaching music composition or

Schenkerian analysis itself, or in music notation software.

97

APPENDIX A

MUSICAL EXCERPTS AND MOPS

This appendix contains, for each musical excerpt in the corpus,

• the score of the excerpt in standard music notation,

• the textbook analysis of the excerpt, algorithmically converted into pseudo-Schenkerian

notation,

• the top-ranked MOP produced by ParseMop-C, obtained under leave-one-out cross-

validation, algorithmically converted into pseudo-Schenkerian notation, and

• the top-ranked MOPs produced by ParseMop-A, -B, and -C under leave-one-out

cross-validation.

The musical scores and the pseudo-Schenkerian diagrams are the same ones provided

to the three graders who were tasked with evaluating the ParseMop output. The dia-

grams were not altered except to adjust the positioning of slurs in cases where many slurs

overlapped.

98

Excerpt identifier: bach1

MOP(s) contained in this excerpt: bach1a, bach1b

Score:

34

34













  


   

   

 
   

   



  


       

   
   



  


      

   

 



    

Textbook analysis:

ZZZZZ ZZZZZ ZZZZZZZZZ ZZ
I

ZZZ Z ZZZZZZ� � ZZZ
V

ZZZZZ
V

ZZZZZZZ
I

ZZZZZ ZZZ Z
IV

ZZ ZZZZZZZZ
IG:

ZZZ ZZ ZZZ ZZZZ
I

ZZZZ ZZZZZ
II

ZZZZZZZZZZ ZZZZZZ

ZZZ
I

ZZ ZZZ ZZZ
II

ZZZZ
V

ZZZZ� � ZZ
I

ZZZ
II

ZZ ZZ ZZZZ
V

ZZZZZZ ZZZZZ
IV

ZZZZZZZZ
IG:

ZZZZZZZ ZZZZ ZZZZZZZZ
I

ZZZZZ ZZZZZZZZZZZ

ParseMop-C analysis:

ZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZ
I

ZZZZZ� � Z Z
V

ZZZZZZZ ZZZ
I

ZZZZZ
V

Z Z
IV

ZZZZZ ZZZZZZZZZ
I

Z
G:

ZZ ZZZZZZZ ZZZZZZZZZZZZZ ZZZZZZZZZZZZZ
I

ZZZ ZZ ZZZZZ
II

ZZ ZZZZZZZZZ ZZZ
I

Z
V

Z ZZZZZZ� Z
I

� ZZ
II

ZZ ZZZZZ
V

ZZZZZZZZZ ZZZZ
IG:

ZZZ ZZZZZZZ ZZZZZZZ Z
II

ZZZ
I

ZZZZZZZZ
IV

ZZZZ

99

ST
A
RT

FI
N
IS
H

A
4

D
5

D
5

G
4

B4
G
4

G
4

B4
G
5

E5
E5

G
4

G
4

B4
A
4

C5
A
4

F#
4

B4
C5

A
4

C5
A
4

F#
5

C5
D
5

D
5

C5
B4

ST
A
RT

FI
N
IS
H

A
4

B4
B4

B4
C5

C5

D
5

D
5

G
4

F#
4

G
4

A
4

C5
G
4

A
4

B4
A
4

D
5

G
5

E5
E5

G
4

G
4

B4
A
4

F#
5

C5
C5

D
5

ST
A
RT

FI
N
IS
H

A
4

B4
C5

D
5

D
5

G
4

G
5

E5
D
5

E5
G
4

G
4

F#
4

A
4

C5
G
4

F#
5

A
4

B4
A
4

C5
B4

D
5

G
4

B4
C5

C5
B4

A
4

F
ig

u
re

A
.1

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b
ac

h
1a

100

ST
A
RT

FI
N
IS
H

B4
B4

D
5

D
5

G
4

A
4

C5
G
4

F#
4

A
4

G
5

E5
E5

G
4

G
4

A
4

C5
B4

A
4

F#
5

B4
C5

C5
C5

D
5

A
4

D
5

B4
G
4

ST
A
RT

FI
N
IS
H

G
4

A
4

A
4

B4
B4

C5
C5

D
5

D
5

F#
4

G
4

B4
G
4

A
4

C5
A
4

B4
D
5

G
5

E5
E5

G
4

G
4

B4
A
4

F#
5

C5
C5

D
5

ST
A
RT

FI
N
IS
H

G
4

A
4

B4
C5

D
5

G
5

D
5

D
5

F#
4

B4
G
4

B4
C5

A
4

B4
A
4

A
4

G
4

C5

E5
E5

G
4

G
4

F#
5

B4
A
4

C5
C5

D
5

F
ig

u
re

A
.2

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b
ac

h
1b

101

Excerpt identifier: bach2

MOP(s) contained in this excerpt: bach2a

Score:

44

44

44

44












 



  




 








   
 
 

 

 
 

 
 

 

Textbook analysis:

V

Z
IIV

ZZ ZZ����
V

Z
I

Z
I

Z
VII

ZZ
IV

Z
A: I

Z Z
I

ZZZ
I

Z
V

Z

ParseMop-C analysis:

I

ZZZZ
V

ZZZ����
V

ZZ
I

ZZZ
VII

Z
IV

Z
A: I

Z
I

ZZ
I IV

ZZZ
V

Z
I

Z ZZ

102

ST
A
RT

FI
N
IS
H

C#
5

E5
C#
5

A
4

B4
C#
5

D
5

D
5

D
5

B4
C#
5

E5

ST
A
RT

FI
N
IS
H

A
4

B4
C#
5

C#
5

D
5

E5
C#
5

D
5

B4
C#
5

E5

D
5

ST
A
RT

FI
N
IS
H

A
4

B4
C#
5

D
5

E5
C#
5

C#
5

C#
5

D
5

B4
E5

D
5

F
ig

u
re

A
.3

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b
ac

h
2a

103

Excerpt identifier: bach3

MOP(s) contained in this excerpt: bach3a

Score:





44

44



 
  

   
    

 
   


  

 
 







Textbook analysis:

ZZZZZ ZZZZZZZZ ZZZZ�
V

ZZ
I

ZZZ
VI

ZZ
V

ZZ
C: I

Z
V

ZZ ZZ
VI

ZZZZZ
I

ZZZ ZZZZ

ParseMop-C analysis:

ZZZ
VI

ZZZZ ZZZ Z�
V

ZZ Z
I

ZZZZZ ZZZZ
C: I

ZZ
V

ZZ Z
I

ZZ
VI

ZZ ZZ
V

Z

104

ST
A
RT

FI
N
IS
H

E5
D
5

B4
C5

C5
E5

F5
C5

C5
D
5

C5
D
5

B4
A
4

C5
D
5

B4

ST
A
RT

FI
N
IS
H

C5
D
5

E5
E5

D
5

C5

C5
B4

A
4

C5
D
5

F5
C5

B4
D
5

C5
B4

ST
A
RT

FI
N
IS
H

C5
D
5

E5
D
5

C5
C5

C5
B4

A
4

B4

C5
D
5

E5
F5

D
5

B4
C5

F
ig

u
re

A
.4

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b
ac

h
3a

105

Excerpt identifier: handel1

MOP(s) contained in this excerpt: handel1a

Score:

44

44

44











 
  

 
 

      

   
 

  
   

       

 
 

 
 

     

  
   

    

Textbook analysis:

ZZZZZ
VII

ZZZZ ZZZ
VI

Z ZZ
V

ZZZ Z
V

ZZZZZ
II

ZZZZ ZZZZZZ
I

ZZZ Z ZZZ
I

Z���
V

Z
II I

Z
V

ZZZZZ
I

ZZZZ ZZZZZZZZZZZZZZZZ ZZZZZZZ
IV

ZZZZZZZ
IV

ZZ
I

ZZZZZ
IB

�
:

Z ZZZZZZ
I

ZZZ
II

ZZZ ZZZZZZ
VI

ZZZZZZZZZZZZ
II

ZZZZZZZZ ZZZZZZZZZ
V

ZZZZZZZ

ParseMop-C analysis:

ZZZ ZZZZZZZZZZZZZZZZZZZ
V

ZZZZZZZZZZ ZZ
V

ZZ�� ZZZ
I

� ZZZZZZZZZZZ ZZZZZ
II

Z
VI

ZZZZZZZZZZ
II

ZZZZZZZZZZ
I

ZZZ
IV

ZZ
IB

�
:

ZZZ ZZZZZZZZ
I

ZZZZ ZZZZZZZZ ZZZZZZZZZZ
II

ZZZZZZZZZ ZZZZZZZZZ
IV

I

ZZ ZZZZZZ���
I

Z
II

ZZ
V

Z
V

ZZZ
VI

ZZZZZZZ
II

ZZ
V

ZZZ
V

ZZZZ
I

ZZ

106

ST
A
RT

FI
N
IS
H

Bb
4
F5

Bb
4

D
5

G
5

F5
C5

Eb
5

Bb
4

Bb
4

G
4

F4
F5

Eb
5

Bb
4

D
5

A
4

G
5

C5
Bb
4

C5
Bb
4

A
4

A
4

Bb
4

C5
A
4

F4
G
4

F4
Eb
5

C5
D
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5

F5
F5

Bb
4

A
4

Bb
4

C5
C5

A
4

G
5

Bb
4

Bb
4

G
4

F4

C5
F4

D
5

G
5

Bb
4

D
5

Eb
5

A
4

Bb
4

A
4

F4
G
4

C5
Bb
4
Eb
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5
Bb
4

A
4

Bb
4

C5
C5

A
4

G
5

D
5

F5
C5

F4
Bb
4

C5
Eb
5

Bb
4

Bb
4

G
4

F4
F5

Eb
5

Bb
4

D
5

G
5

A
4

Bb
4

A
4

F4
G
4

F
ig

u
re

A
.5

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
an

d
el

1a

107

Excerpt identifier: haydn1

MOP(s) contained in this excerpt: haydn1a, haydn1b

Score:
Andante






24

24















 
 


  

 





 
   

 
 






 

  




 









Textbook analysis:

ZZZZZZ
V

ZZZZZZZ ZZZZZZ ZZZZ� �� ZZZZZZ ZZZZ
IB

�
:

ZZZZ
V

ZZZZ
I

ZZZZ
VI

ZZZZ ZZZ
IV

ZZZZZZZ ZZZZZZZZZZ
II

Z ZZZZ

B
�
: I

Z Z
I

Z���
IV

ZZZ ZZZ
II

ZZZZZZZZ
I

ZZZZ
VI

ZZZZ
V

ZZZZZZ
V

ZZZ

ParseMop-C analysis:

ZZZ ZZZZ
V

ZZZZZZZZZZ ZZ� �� ZZ
IB

�
:

ZZZ
VI

ZZZZ
II

ZZZ
I

ZZ
IV

ZZ ZZZ
V

ZZZZ ZZZZZZZZZ ZZZZZZ

108

Z
IV

ZZZZ ZZ��� ZZZ
B
�
: I

ZZZ ZZZ
VI

ZZ
II

ZZZ
I

ZZZ
V

ZZZ Z
I

ZZZ
V

ZZZ

109

ST
A
RT

FI
N
IS
H

C5
D
5

D
5

D
5

C5
Eb
5

A
4

C5
Bb
4

Eb
5

Bb
4

C5
Bb
4

C5
Eb
5

D
5

D
5

D
5

ST
A
RT

FI
N
IS
H

C5

C5
D
5

D
5

D
5

A
4

C5
Bb
4

Eb
5

Bb
4

Eb
5

C5
Bb
4

C5
Eb
5

D
5

D
5

D
5

ST
A
RT

FI
N
IS
H

C5
D
5

C5
Bb
4

C5
Eb
5

D
5

Bb
4

Eb
5

D
5

Eb
5

C5
A
4

D
5

C5
D
5

D
5

Bb
4

F
ig

u
re

A
.6

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
1a

110

ST
A
RT

FI
N
IS
H

D
5

Bb
4

C5
Bb
4

Eb
5

D
5

Eb
5

A
4

Bb
4

D
5

C5
C5

D
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

D
5

D
5

A
4

Bb
4

D
5

Bb
4

C5
C5

Eb
5

Eb
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

A
4

Bb
4

D
5

Bb
4

Eb
5

D
5

Eb
5

C5

C5
D
5

F
ig

u
re

A
.7

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
1b

111

Excerpt identifier: haydn2

MOP(s) contained in this excerpt: haydn2a

Score:
Allegro con brio

3








22

22







  



 



 




  


  



 

 

 





 

Textbook analysis:

ZZ Z
II

ZZZZZZZ
I

ZZZZZ Z Z
I

Z
V

Z
IC:

Z� ZZZZZ
V

ZZZZZZZZZZ ZZZ ZZZZ ZZZZZ ZZZZZ ZZZZZZ

ParseMop-C analysis:

I

ZZ ZZZZZ ZZ
I

Z
V

Z� ZZ
II

ZZZZ ZZZ
C: I

Z ZZ ZZZZZ ZZZ
V

ZZZ ZZZ

112

ST
A
RT

FI
N
IS
H

G
5

C5
C6

E5
G
5

E5
F5

E5
C5

E5

C5
D
5

C5
D
5

B4
D
5

B4
G
4

C5
F5

D
5

G
5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
5

G
5

E5
C5

B4
C5

D
5

F5
G
5

C5
E5

E5
C6

B4
D
5

C5
G
4

D
5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
4

E5
C6

G
5

C5

B4
C5

D
5

E5
F5

D
5

D
5

C5
G
5

G
5

B4
E5

C5

F
ig

u
re

A
.8

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
2a

113

Excerpt identifier: haydn3

MOP(s) contained in this excerpt: haydn3a

Score:
3

333

3

3

3

3




 

34

34















 

 

  
 

  

  

  

  
  


 



  

 

   








  

Textbook analysis:

ZZZZZ
V

ZZZZZZZZZZZZZ
Z

II

ZZZ ZZZZZZZZ ZZZZZZZ� � ZZ
I

ZZZZZZZZZZ ZZZZZZZZ
ZZZZZZZ ZZZZZZZZ ZZ

VG:

ZZ ZZ ZZZZZ
I

ZZ ZZZZZ ZZZZ
VI I

ZZZZ ZZZZZZ
V

ZZZZZZZ

ParseMop-C analysis:

ZZZZZZ ZZZZZZZZZZ
ZZ ZZ

ZZZZZ
II

ZZ
V

ZZZ ZZZZZZZZZ� � ZZZZ
I

ZZZZZZZZZZ ZZZZZZZ ZZZZZ
ZZZZ
V

ZZZZZ
VG:

ZZ
ZZZZZ

I

ZZ
ZZ
VI

ZZ ZZZ
I

ZZZZ ZZZZ ZZZ ZZZZZ

114

ST
A
RT

FI
N
IS
H

D
6

D
5

D
4

D
5

G
5

B5
G
5

G
4

B4
B3

C5

G
4

B5
B4

D
4

B3
C4

F#
4

A
4

A
4

A
3

C4
F#
4

A
4

F#
4

G
4

C5
E5

A
4

F#
4

D
4

E4

F#
4

A
4

C5

ST
A
RT

FI
N
IS
H

G
4

A
4

A
3

B3
B3

C4
C4

C5
D
5

D
6

D
5

D
4

F#
4

G
4

C5
E5

A
4

F#
4

D
4

E4

F#
4

A
4

C5
D
4

B4
F#
4

A
4

F#
4

A
4

G
5

B5
G
5

G
4

B5
B4

ST
A
RT

FI
N
IS
H

G
4

A
3

B3
C5

D
6

D
5

D
4

A
4

C5
E5

B4
F#
4

G
4

C4
F#
4

A
4

D
4

A
4

F#
4

D
4

E4
B5

C4
F#
4

A
4

B3
F#
4

A
4

C5
G
5

D
5

G
5

G
4

B5
B4

F
ig

u
re

A
.9

:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
3a

115

Excerpt identifier: haydn4

MOP(s) contained in this excerpt: haydn4a

Score:











24

24







  

 
   

Textbook analysis:

ZZ ZZ� � ZZ
I

Z ZZZZZ
IG:

Z ZZ
V

Z

ParseMop-C analysis:

ZZZ
V

ZZZ ZZ� � ZZ
I

Z
IG:

ZZ ZZZ

116

ST
A
RT

FI
N
IS
H

D
5

B4
G
4

G
4

C5
A
4

A
4

G
4

B4

ST
A
RT

FI
N
IS
H

G
4

A
4

A
4

B4
B4

G
4

G
4

D
5

C5

ST
A
RT

FI
N
IS
H

G
4

A
4

B4
A
4

G
4

G
4

D
5

C5

B4

F
ig

u
re

A
.1

0:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
4a

117

Excerpt identifier: haydn5

MOP(s) contained in this excerpt: haydn5a

Score:

34

34






 
 


  


 

Textbook analysis:

ZZZZZZ
V

ZZZZ
E
�
: I I

Z� ��� ZZ
II

ZZZ

ParseMop-C analysis:

ZZZZZ��� Z
I

� ZZ
II

Z
E
�
: I

Z ZZZZZZ
V

118

ST
A
RT

FI
N
IS
H

Bb
4
G
5

Eb
5

F4
F5

D
5

G
4

Eb
5

ST
A
RT

FI
N
IS
H

Eb
5

F5
G
5

Bb
4

D
5

Eb
5

F4
G
4

ST
A
RT

FI
N
IS
H

Eb
5

F5
G
5

Bb
4

D
5

Eb
5

F4
G
4

F
ig

u
re

A
.1

1:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
5a

119

Excerpt identifier: haydn6

MOP(s) contained in this excerpt: haydn6a

Score:




34

34







 

 
    


     


  

Textbook analysis:

ZZZ��� ZZZ
B
�
: I

ZZZ ZZ Z
V

ZZZZZ ZZZZ Z
I

ZZZ ZZ

ParseMop-C analysis:

ZZZ
V

ZZ���
I

ZZZ ZZZZZ ZZZ
B
�
: I

ZZ ZZ ZZZZ ZZZZ

120

ST
A
RT

FI
N
IS
H

D
5

F5
F4

D
5

Eb
5

Bb
4

C5
D
5

Bb
4

D
5

C5
Bb
4

Eb
5

Eb
5

ST
A
RT

FI
N
IS
H

D
5

Eb
5

Eb
5

F5
Eb
5

D
5

D
5

C5
D
5

C5
Bb
4

Bb
4

F4
Bb
4

ST
A
RT

FI
N
IS
H

D
5

Eb
5

F5
Eb
5

D
5

C5
D
5

C5
Eb
5

F4
Bb
4

Bb
4

D
5

Bb
4

F
ig

u
re

A
.1

2:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
6a

121

Excerpt identifier: haydn7

MOP(s) contained in this excerpt: haydn7a

Score:




34

34






  
  

   
  

   

   


  




Textbook analysis:

ZZZZ ZZZZ
V

ZZZZZ
VI

ZZZZZ����� Z
I

Z� �� Z
VI

Z
V

ZZ
II

ZZZ
I

ZZZZZ
IB

�
:

Z
V

ZZZ ZZZZZ ZZZZ
V

ZZZZZ
V

ZZZZZ
I

ParseMop-C analysis:

ZZZ
V

ZZZ
V

Z ��Z
VI

Z
I

ZZ���
II

ZZ
VI

Z
V

Z
V

ZZZ
I

ZZZZZZZ
B
�
:

Z
I

Z ZZZ
I

ZZZ ZZZZZZ
V

ZZZZ

122

ST
A
RT

FI
N
IS
H

Bb
4

F5
F5

F5
Bb
4

D
5

Eb
5

C5
G
5

F#
5

Bb
5

A
5

C5
Bb
5

A
5

A
4

Bb
4

D
5

F5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5
F5

F5
F5

D
5

Bb
4

A
4

Bb
4

C5
G
5

F#
5

Bb
5

A
5

Bb
5

A
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5
D
5

Bb
4

A
4

Bb
4

C5
G
5

F#
5

Bb
5

A
5

F5
F5

F5
Bb
5

A
5

F
ig

u
re

A
.1

3:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
h
ay

d
n
7a

123

Excerpt identifier: clementi1

MOP(s) contained in this excerpt: clementi1a

Score:


 
 




44

44






 
   

 
   

Textbook analysis:

ZZ Z
V

� �� Z
I

ZZZZ ZZ Z
ID:

Z

ParseMop-C analysis:

ZZ Z
V

� �� Z
I

ZZ ZZ ZZ ZZ
ID:

124

ST
A
RT

FI
N
IS
H

A
4

D
5

D
5

A
4

F#
5

E5
C#
5

D
5

E5
G
5

C#
5

ST
A
RT

FI
N
IS
H

D
5

E5
F#
5

E5
D
5

D
5

A
4

A
4

C#
5

G
5

C#
5

ST
A
RT

FI
N
IS
H

D
5

E5
F#
5

E5
D
5

D
5

A
4

A
4

C#
5

G
5

C#
5

F
ig

u
re

A
.1

4:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
cl

em
en

ti
1a

125

Excerpt identifier: mozart1

MOP(s) contained in this excerpt: mozart1a, mozart1b

Score:
Adagio






























 




psf

p




68

68















  
 

 
  



 

 

 


 
 







   
 

 



  



 

 
 




  

  
 







Textbook analysis:

ZZ
V

ZZ ZZ
V

ZZ ZZZ
VI

Z ZZZ
V

Z
I

Z
II

ZZ
I

ZZ ZZ
A:

����

V

ZZZZ ZZZ
VI

ZZZ ZZ
II

ZZZ
V

Z
I

Z
V

ZZ
A:

Z���
I

Z ZZZ�
I

Z

ParseMop-C analysis:

V

ZZ ZZ
V

ZZZ
VI

ZZZ ZZZZZ
II

ZZ
I

ZZ
I

ZZZ���� Z
A:

ZZZ Z
V

Z

ZZZZ
I

ZZZ
V

ZZ
VI

ZZZ ZZ ZZ
V

Z
I II

ZZZ
V

Z
A:

ZZ���� Z
I

Z

126

ST
A
RT

FI
N
IS
H

B4
E5

C#
5

C#
5

D
5

B4
C#
5

D
5

C#
5

D
5

E5
B4

A
4

B4
C#
5

ST
A
RT

FI
N
IS
H

B4
C#
5

D
5

E5
C#
5

C#
5

D
5

E5
B4

A
4

B4
C#
5

D
5

B4
C#
5

ST
A
RT

FI
N
IS
H

B4
C#
5

D
5

E5
C#
5

C#
5

D
5

E5
B4

A
4

B4
C#
5

D
5

B4
C#
5

F
ig

u
re

A
.1

5:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
a

127

ST
A
RT

FI
N
IS
H

E5
C#
5

A
4

C#
5

D
5

B4

C#
5

D
5

B4
C#
5

D
5

A
4

B4
C#
5

B4

ST
A
RT

FI
N
IS
H

A
4

B4
C#
5

D
5

E5
C#
5

C#
5

D
5

A
4

B4
B4

C#
5

D
5

B4
C#
5

ST
A
RT

FI
N
IS
H

A
4

B4
C#
5

D
5

E5
C#
5

C#
5

D
5

A
4

B4
B4

C#
5

D
5

B4
C#
5

F
ig

u
re

A
.1

6:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
b

128

Excerpt identifier: mozart2

MOP(s) contained in this excerpt: mozart2a, mozart2b

Score:

3

















22

22



















   

 



 


    

 






 






 




  





  

Textbook analysis:

Z ZZ
II V

ZZZZ
I

ZZZ ZZZZ ZZZ��� ZZZ ZZZZ
V

ZZZZ
B
�
: I

ZZ
II

ZZZ
V

ZZZ ZZZZ
I

ZZ ZZZZ

ZZ ZZZ��� ZZZ ZZZ
I

ZZ
B
�
: I

ZZ
II

ZZ
V

ZZZ Z
V I

Z
II

ZZ Z

ParseMop-C analysis:

II

Z
V

ZZZZZ
I

ZZZ ZZZ ZZZ��� ZZZ ZZZ
II

Z ZZZZZ
B
�
: I

ZZ ZZZZZ ZZZZ
V

ZZ
V

ZZZZZ ZZZZ
I

ZZ ZZ��� ZZ
B
�
: I

ZZZ ZZ
V

ZZZ
I

ZZ
II

ZZZZ Z
V

Z
I

ZZ
II

ZZ

129

ST
A
RT

FI
N
IS
H

F5
C5

Eb
5

Eb
5

Bb
4

D
5

D
5

G
5

D
5

Eb
5

D
5

C5
A
4

F5
Bb
4

C5
D
5

Eb
5

ST
A
RT

FI
N
IS
H

C5
D
5

Eb
5

F5
Eb
5

F5
C5

D
5

Bb
4

A
4

G
5

D
5

Bb
4

D
5

Eb
5

D
5

Eb
5

C5

ST
A
RT

FI
N
IS
H

C5
D
5

Eb
5

F5
Eb
5

F5
C5

D
5

Bb
4

A
4

G
5

D
5

Bb
4

D
5

Eb
5

D
5

Eb
5

C5

F
ig

u
re

A
.1

7:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t2
a

130

ST
A
RT

FI
N
IS
H

Bb
4

F5
D
5

Bb
4

A
4

G
5

Eb
5

Bb
4

D
5

Eb
5

C5
A
4

Bb
4

C5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5

A
4

Bb
4

Bb
4

A
4

G
5

Bb
4

D
5

Eb
5

C5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5

A
4

Bb
4

Bb
4

A
4

G
5

Bb
4

D
5

Eb
5

C5

F
ig

u
re

A
.1

8:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t2
b

131

Excerpt identifier: mozart3

MOP(s) contained in this excerpt: mozart3a, mozart3b

Score:
Rondo



































24

24











   

  



  


     


  




 
   

 





 





Textbook analysis:

ZZ
II

ZZ�Z ZZZZ ZZ�
V

ZZZ ZZ
I

ZZ Z �ZZ
VI

Z
C: I

Z
V

Z
II

Z ZZZ ZZZZZZZZ
IV

ZZZZ

ZZZZZZ ZZ� �
I

Z
V

ZZ ZZ
V

ZZ
I

ZZ
VI

Z
C: I

Z
II

ZZ ZZ �
II

ZZZZ Z

ParseMop-C analysis:

ZZZZ ZZ
II

ZZZZZ���� ZZZZ ZZZZ�
V

ZZZ �� ZZZ
I

ZZZ ZZZZZ
IC:

Z
VI

ZZ
V

Z
II

ZZZ ZZZZZZZZZZZZ ZZZ
IV

Z

ZZZZZ� ZZ� ��
V

ZZ
I

ZZZ
V

ZZ
I

ZZ
VI

Z
C: I

Z
II

Z ZZZ
II

ZZZZ ZZ

132

ST
A
RT

FI
N
IS
H

G
4

C5
G
5

B4
D
5

A
4

E5
C5

E5

A
4

C5
D
5

F5
E5

C5
B4

D
5

F5
D
5

C#
5

ST
A
RT

FI
N
IS
H

D
5

D
5

E5
F5

G
5

G
4

B4
C5

F5
E5

A
4

C5
A
4

D
5

C5
B4

E5
C5

C#
5

D
5

ST
A
RT

FI
N
IS
H

D
5

E5
F5

G
5

G
4

B4
C5

F5
E5

D
5

A
4

E5
A
4

C5
C5

C5
B4

D
5

D
5

C#
5

F
ig

u
re

A
.1

9:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t3
a

133

ST
A
RT

FI
N
IS
H

G
5

G
5

D
5

E5
C5

E5
F5

A
5

F5
D
5

C#
5

B4
F5

E5
D
5

ST
A
RT

FI
N
IS
H

C5
D
5

D
5

E5
F5

G
5

F5
E5

C#
5

B4
D
5

E5
G
5

A
5

F5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
5

B4
F5

E5
C#
5

D
5

D
5

E5
G
5

A
5

F5

F
ig

u
re

A
.2

0:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t3
b

134

Excerpt identifier: mozart4

MOP(s) contained in this excerpt: mozart4a, mozart4b

Score:
Allegretto





 




 
 



   

  








 

 
 












22

22















   
 



   

  
 

 


  

 
 
 

  


   

  

  
 


 

Textbook analysis:

ZZZZ
I

ZZ
V

ZZ����
V

Z ZZZZZ
A: I

Z
II

ZZZ
V

ZZ
I

ZZZZZ ZZ

V

ZZ ZZ
II

ZZ���� ZZ
I

ZZZZ
A: I

Z
II

ZZZ
V

Z
VI

ZZZZ ZZ

ParseMop-C analysis:

I

ZZZ
I

ZZ
V

ZZ����
V

Z ZZZZZZ
A: I

Z
II

ZZZZ ZZ
V

ZZZZZ Z

V

ZZZ
VI

Z ZZ
II

���� ZZ
I

ZZZZZZ
A: I

Z
II

ZZZZ ZZ
V

ZZZZ

135

ST
A
RT

FI
N
IS
H

C#
5

C#
5

E5
A
4

E5

B4
B4

C#
5

B4
D
5

D
5

F#
5

E5

ST
A
RT

FI
N
IS
H

B4
C#
5

C#
5

D
5

D
5

E5

B4
B4

F#
5

E5
E5

A
4

C#
5

ST
A
RT

FI
N
IS
H

B4
C#
5

D
5

E5
C#
5

B4
B4

D
5

F#
5

E5

C#
5

E5
A
4

F
ig

u
re

A
.2

1:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t4
a

136

ST
A
RT

FI
N
IS
H

E5

A
5

C#
5

B4
D
5

C#
6

D
5

F#
5

E5

B5
G
#5

G
#5

F#
5

ST
A
RT

FI
N
IS
H

A
5

B5
C#
6

D
5

D
5

E5

G
#5

G
#5

F#
5

B4
F#
5

E5
C#
5

ST
A
RT

FI
N
IS
H

A
5

B5
C#
6

D
5

E5
G
#5

G
#5

F#
5

B4
D
5

F#
5

E5

C#
5

F
ig

u
re

A
.2

2:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t4
b

137

Excerpt identifier: mozart5

MOP(s) contained in this excerpt: mozart5a

Score:











44

44













     

 

 
    

 
   





 
   

  

  

  

 

 


 






Textbook analysis:

ZZZZ ZZZZZZZZZZZZZZ ZZZZZZZ Z ZZZZZ� Z
I

�ZZZZZZ
V

ZZZZZZZ ZZZZ
V

ZZZZZZZZ
IC:

Z ZZZZ ��� ZZZZZZ
II

ZZZZZZZ
I

ZZZ ZZZZZZ

ParseMop-C analysis:

ZZZZZZZZ ZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZ ZZZZ� Z ZZ
I

��ZZZZZZZZZZZ ZZZ
V

ZZZZZZZ ZZZ
V

Z Z
II

ZZ
I

ZZZ ZZ
IC:

Z Z Z ZZ ZZ ZZZZZZZZZZ ZZZZZZZZ� ZZZZZZZ ZZZZZZZZZZZZZZZZ

138

ST
A
RT

FI
N
IS
H

C5
G
4

C5
E5

G
5

D
5

F5
G
5

A
5

C5
E5

E5
F5

D
5

C#
5

G
5

F5
E5

G
5

A
5

F5
D
5

F5

D
5

E5
D
5

C#
5

F5
D
5

C#
5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

F5
F5

G
5

G
5

E5
C5

F5
G
5

A
5

D
5

E5
D
5

E5
D
5

C#
5

C#
5

A
5

D
5

C#
5

C5
D
5

F5
E5

F5
G
4

G
5

ST
A
RT

FI
N
IS
H

C5

D
5

E5
F5

G
5

E5
C5

F5
E5

G
5

A
5

F5
D
5

F5

C#
5

D
5

G
5

E5
G
5

A
5

C5
D
5

F5
G
4

E5
D
5

C#
5

F5
D
5

C#
5

F
ig

u
re

A
.2

3:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t5
a

139

Excerpt identifier: mozart6

MOP(s) contained in this excerpt: mozart6a

Score:

  


44

44






   

 

     

       

      

    



   

Textbook analysis:

Z Z ZZZZZZZZZ
V

ZZZZZZ ZZZZZZZZ ZZZZZ
I

� �� ZZZZ ZZZZZZZZ ZZZZZZZZZZZ
IB

�
:

ZZZZZZZZ ZZZZZ ZZZZZZ ZZZZZ
II

ParseMop-C analysis:

ZZZ ZZZ
V

ZZZZZZ ZZZ ZZZ
I

� �� ZZZZZZ ZZZZZZZZZZ ZZZZZZZZZZZ
IB

�
:

ZZZ ZZZZ ZZZZZZZ ZZZZZ
II

140

ST
A
RT

FI
N
IS
H

D
5

F5

C5
D
5

Eb
5

Bb
4

C5
D
5

G
5

C5
Eb
5

F5
A
4

Bb
4

G
5

F5
C5

Bb
4

Eb
5

F5
D
5

ST
A
RT

FI
N
IS
H

D
5

Eb
5

Eb
5

F5
C5

Bb
4

C5
D
5

G
5

F5
C5

D
5

Bb
4

D
5

Eb
5

F5
A
4

F5
Bb
4

G
5

C5

ST
A
RT

FI
N
IS
H

D
5

Eb
5

F5
F5

C5
Bb
4

C5
D
5

G
5

Eb
5

C5
D
5

Eb
5

F5
A
4

Bb
4

C5
F5

Bb
4

D
5

G
5

F
ig

u
re

A
.2

4:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t6
a

141

Excerpt identifier: mozart7

MOP(s) contained in this excerpt: mozart7a

Score:




22

22






  
   

      

  

   

     


   

Textbook analysis:

II

ZZ ZZZZZZZ ZZZ
I

ZZZ ZZ
I

ZZZ� �� ZZZ ZZZ
V

ZZ
V

ZZZZZZ
D: V I

ZZ Z ZZ ZZZZZ
I

ZZ
V

ZZZ ZZZZZZ

ParseMop-C analysis:

ZZZ ZZZ
I

ZZZ
V

ZZZ Z
I

Z� �� Z
II

Z Z Z
V

ZZZZZ
V

ZZZZZZ
D: V

Z
I

ZZ ZZZ ZZZ
I

ZZZZZZZZZZ ZZZZ

142

ST
A
RT

FI
N
IS
H

D
5

F#
5

A
5

D
5

D
5

A
4

E5
G
5

A
5

E5
F#
5

G
5

E5
E5

E5
D
5

E5
E5

F#
5

G
5

E5
D
5

F#
5

ST
A
RT

FI
N
IS
H

D
5

E5
E5

E5
F#
5

F#
5

E5
E5

E5
D
5

D
5

A
4

G
5

D
5

F#
5

G
5

E5
A
5

F#
5

G
5

A
5

D
5

E5

ST
A
RT

FI
N
IS
H

D
5

E5
F#
5

E5
D
5

F#
5

F#
5

A
5

D
5

D
5

A
4

G
5

E5
G
5

E5
G
5

E5
A
5

E5
E5

E5
D
5

F#
5

F
ig

u
re

A
.2

5:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t7
a

143

Excerpt identifier: mozart8

MOP(s) contained in this excerpt: mozart8a

Score:















24

24







 






  


   





  

   


  

 
  



  

   

  

  




    




Textbook analysis:

ZZ ZZZZZZ Z�
ZZZZZZZZZ

IC:

Z Z ZZZZ ZZZZZZZZ

� ZZ������� ZZZZZZZZ ZZZZZ ZZZZZZ ZZZZZZZZZZZZZZZZZZZZ
V

ZZZZZZZZZZZZZ ZZZ
II

ZZZZZZ ZZZZ
I

Z�
ZZ Z

V

ZZ
I

ZZZ ZZZZZZZ
VI

ZZZZZ ZZZZ ZZZZZZZZZZZZ� ZZZZZZZZZ����� ZZZZZZZZZZZZ ZZZZZZZZ ZZZ�Z ZZZZ
IV

ZZZZZZZZZ ZZZ ZZZZZZ������
I

ZZZZZZ ZZ ZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZ

ParseMop-C analysis:

ZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZ
IV

ZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZ��������� ZZ
I

ZZZZZZZZ
�

ZZZZ�� ZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZ
C: I

ZZZZZ ZZZZZZZZZZZZZZZ Z ZZZZZZ ZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZ ZZZZZ Z�����ZZZZZZ

ZZ ZZZZ
VI

ZZZZZ
I

ZZZZ ZZZ
V

Z
I

� Z ZZZZ ZZ
IIV

ZZZ ZZZZZ��ZZZZZZ ZZZZZZ ZZZZZ ZZZZZZZZ ZZZZZZZZ

144

ST
A
RT

FI
N
IS
H

G
5

D
5

G
5

F#
5

A
5

C5
G
5

F#
5

G
5

F#
5

C5
B4

G
5

A
5

G
#5

C5
B4

C5
E6

C5
B4

A
5

C6
B5

C6
A
5

B5
C6

D
6

B5
G
5

A
5

D
6

E5

F5
G
5

B5
C6

A
5

D
6

F5
D
5

G
5

B5
C6

B4
G
5

A
5

G
5

A
5

E5
F5

F5

ST
A
RT

FI
N
IS
H

C5

D
5

E5
F5

F5
G
5

G
5

G
5

G
5

G
5

G
5

D
5

B4
G
5

A
5

B5
C6

F5
A
5

D
6

G
5

G
5

B5
C6

E5
F5

E6
G
5

A
5

A
5

G
#5

C6
D
6

F#
5

A
5

B5
F#
5

C6
B5

C6
A
5

A
5

F#
5

B5

A
5

C5
D
6

C5
B4

C5
B4

C5
B4

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
5

C6

F5
G
5

G
5

E6

D
5

B4
G
5

A
5

A
5

B5
E5

D
6

F5
B5

C6
C6

D
6

G
5

A
5

G
5

A
5

G
5

A
5

C5

B5
F5

A
5

G
5

F#
5

G
5

F#
5

C5
B4

G
5

F#
5

C5
B4

C6
A
5

G
#5

C5
B4

A
5

B5
B5

C6
D
6

F
ig

u
re

A
.2

6:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t8
a

145

Excerpt identifier: mozart9

MOP(s) contained in this excerpt: mozart9a

Score: 

 
 

68

68









  
 

   
 

 


Textbook analysis:

ZZZZ� ��� Z
I

Z
E
�
: I

ZZ ZZZ
V

ParseMop-C analysis:

ZZZZ� ��� Z
I

Z
E
�
: I

ZZ ZZZ
V

146

ST
A
RT

FI
N
IS
H

G
4

Bb
4

A
b4

G
4

A
b4

F4
G
4

ST
A
RT

FI
N
IS
H

G
4

A
b4

A
b4

Bb
4

F4
G
4

G
4

ST
A
RT

FI
N
IS
H

G
4

A
b4

Bb
4

A
b4

F4
G
4

G
4

F
ig

u
re

A
.2

7:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t9
a

147

Excerpt identifier: mozart10

MOP(s) contained in this excerpt: mozart10a

Score:

33

33 
34

34






 


  
    

 
    

 
    

Textbook analysis:

ZZZZ
I

ZZZZZ
IV

ZZZZ
I

Z�� ZZZZ ZZ
V

ZZZ ZZZZZ
F: I

ZZ
VII

ZZZ
V

ZZZ ZZ
I

Z ZZZZZZ

ParseMop-C analysis:

ZZ
IV

ZZ ZZZZZZ ZZZZZ
I I

ZZZ� � ZZZZ ZZ
V

ZZZ ZZZZZZ
IF:

Z
VII

Z ZZZZZ ZZZZZ
V

ZZZZZ
I

ZZZZZ

148

ST
A
RT

FI
N
IS
H

F4

C5
F4

A
4

Bb
4

A
4

G
4

G
4

A
4

Bb
4

D
5

Bb
4

G
4

A
4

A
4

C5
Bb
4

C5

ST
A
RT

FI
N
IS
H

F4
G
4

A
4

A
4

A
4

G
4

F4

Bb
4

D
5

Bb
4

C5
C5

Bb
4

Bb
4

A
4

C5
A
4

G
4

ST
A
RT

FI
N
IS
H

F4
G
4

A
4

G
4

F4
A
4

C5
Bb
4

A
4

Bb
4

D
5

A
4

G
4

Bb
4

A
4

C5
Bb
4

C5

F
ig

u
re

A
.2

8:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
0a

149

Excerpt identifier: mozart11

MOP(s) contained in this excerpt: mozart11a

Score:




34

34















 



  



  



  
 

    
 

  



  
 


 





Textbook analysis:

ZZZZZZZ
V

ZZZZZZZZZ
F: V

Z ZZZZ ZZZZZZZZZZZZZ ZZZ
II

ZZZZ
I

� � Z
V

Z
I

ZZZZZZZ ZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZZZ
I

ZZZZZZ
V

ZZZZ ZZZ
V

ZZZZ ZZZZZZ
I

ZZZZZZZZZ ZZZZZZZ
I

ParseMop-C analysis:

ZZZZZZ
V

ZZZZZZZZZZZZZZ
I

ZZZZZ Z
V

Z
II

� Z
I

� ZZZZZ ZZZZ
I

ZZZZZZZZZZ
V

ZZZZZZZZZ
F: V

ZZZ Z
I

ZZZZZ ZZZZ
V

ZZZZ ZZZZZZZZZ
I

ZZZ ZZZ

150

ST
A
RT

FI
N
IS
H

F5
F5

E5

A
5

C5
A
5

C5

E5
G
5

C5
D
5

F5
G
5

E5
D
5

F5
E5

D
5

E5
F5

G
5

A
5

G
5

D
5

Bb
5
C5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

A
5

A
5

C5

E5

F5
F5

G
5

Bb
5

F5
G
5

C5
E5

F5
E5

C5
D
5

G
5

E5
D
5

C5
D
5

E5
D
5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

C5
A
5

C5

E5

F5
F5

G
5

F5
E5

D
5

E5
F5

G
5

A
5

G
5

E5
D
5

Bb
5

C5
D
5

C5
E5

D
5

F
ig

u
re

A
.2

9:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
1a

151

Excerpt identifier: mozart12

MOP(s) contained in this excerpt: mozart12a

Score:




34

34











  


 

Textbook analysis:

Z
I

Z� � Z Z
V

Z
F: I

Z
II

ZZ

ParseMop-C analysis:

ZZ Z
I

� � ZZ
II

Z
F: I

Z ZZ
V

ZZ

152

ST
A
RT

FI
N
IS
H

A
5

Bb
5

F5
G
5

E5
F5

G
5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

E5
G
5

F5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

E5
F5

G
5

F
ig

u
re

A
.3

0:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
2a

153

Excerpt identifier: mozart13

MOP(s) contained in this excerpt: mozart13a

Score:




34

34






 
 






 

Textbook analysis:

c ��
D: I

�
I

�
V

�
II

� ���

ParseMop-C analysis:

c ��
D: I

�
I

�
V

�
II

�� ��

154

ST
A
RT

FI
N
IS
H

F#
5
D
5

D
5

C#
5

E5
G
5

ST
A
RT

FI
N
IS
H

D
5

E5
F#
5

C#
5

G
5

D
5

ST
A
RT

FI
N
IS
H

D
5

E5
F#
5

C#
5

G
5

D
5

F
ig

u
re

A
.3

1:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
3a

155

Excerpt identifier: mozart14

MOP(s) contained in this excerpt: mozart14a

Score:

3




38

38






 
 


  

 
 

Textbook analysis:

Z
V

ZZZZ� � Z
I

ZZZ ZZZZ
F: I

ZZZZ Z ZZZZ
IV

ZZZZ

ParseMop-C analysis:

ZZ
V

ZZZ� � Z
I

ZZZZZ
F: I

ZZZ ZZZZ
IV

ZZZZZZZZ

156

ST
A
RT

FI
N
IS
H

F4

A
4

G
4

A
4

Bb
4

D
5

F5
C5

C5

ST
A
RT

FI
N
IS
H

F4
G
4

A
4

A
4

Bb
4

D
5

F5
C5

C5

ST
A
RT

FI
N
IS
H

F4
G
4

A
4

A
4

Bb
4

D
5

F5
C5

C5

F
ig

u
re

A
.3

2:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
4a

157

Excerpt identifier: mozart15

MOP(s) contained in this excerpt: mozart15a

Score: 







24

24







 

 








Textbook analysis:

Z
V

ZZ
II

ZZ
I

� ZZ
IC:

ZZ
II

Z
VI

Z
V

ZZ
I

ParseMop-C analysis:

Z
I

Z
II

Z
V

Z
I

Z
VI

Z
C:

� Z
V

Z
II I

158

ST
A
RT

FI
N
IS
H

C5
G
5

E5
F5

D
5

C5
D
5

B4

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
5

B4
C5

D
5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
F5

G
5

B4
C5

D
5

F
ig

u
re

A
.3

3:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
5a

159

Excerpt identifier: mozart16

MOP(s) contained in this excerpt: mozart16a

Score:


34

34



 


 
   

  

  










  
  





Textbook analysis:

I

Z
II

ZZZZ ZZZ�
I

ZZZ Z
V

ZZZZ ZZ
C: I

ZZZ ZZ ZZ ZZZZZ
V

ZZZ

ParseMop-C analysis:

I

Z
II

ZZZZ ZZZ
I

Z� ZZ Z
V

ZZZZ ZZZ
C: I

ZZZ ZZ ZZZ ZZZZZZZ
V

ZZ

160

ST
A
RT

FI
N
IS
H

C5

C5
G
5

B4
D
5

E5
C5

E5
F5

F5
C5

D
5

B4
D
5

E5
C5

ST
A
RT

FI
N
IS
H

C5
D
5

E5

F5
G
5

B4
C5

C5
B4

D
5

E5
C5

E5
F5

D
5

C5

ST
A
RT

FI
N
IS
H

C5
D
5

E5

F5
G
5

B4
C5

C5
B4

D
5

E5
C5

E5
F5

D
5

C5

F
ig

u
re

A
.3

4:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
6a

161

Excerpt identifier: mozart17

MOP(s) contained in this excerpt: mozart17a, mozart17b

Score:




34

34



 
 

   
   
      

 
       


    

Textbook analysis:

ZZZ ZZZZZZZ
IC:

Z ZZZ
V

ZZZZ� Z
V

ZZZZZZZZZ ZZZZ ZZZ
I

ZZZZZZZZZ ZZZZZ

V

ZZZ ZZZ
I

ZZZZ
II

ZZZZ
IC: V

Z ZZ
I

Z� ZZ
V

ZZZZZZZZZZ ZZ Z ZZZZZZZ ZZZZZ

ParseMop-C analysis:

I

ZZZZZZZZZZ ZZZZZZZZ
V

ZZ� ZZZZ ZZZZZZ ZZZZ
C: I

ZZZZ ZZZZ ZZZZZZZ ZZZZZZZZZZZZ ZZZZZ
V

I

Z�
II

ZZ Z
V

ZZZZ Z
C: V

ZZ ZZZ
I

ZZ ZZZZZ ZZZZZZ
V

ZZZZ
I

ZZZZZZZZZZZZ

162

ST
A
RT

FI
N
IS
H

G
4

G
4

C4
E4

C4
E4

F4
E4

G
4

E4
D
4

D
4

F4
G
4

ST
A
RT

FI
N
IS
H

D
4

E4
E4

E4
E4

G
4

G
4

C4
G
4

C4
F4

D
4

F4
G
4

ST
A
RT

FI
N
IS
H

D
4

E4
G
4

G
4

C4
E4

C4
E4

G
4

E4
F4

D
4

F4
G
4

F
ig

u
re

A
.3

5:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
7a

163

ST
A
RT

FI
N
IS
H

G
4

C4
E4

G
4

E4
C4

E4
F4

D
4

F4
D
4

F4
E4

G
4

ST
A
RT

FI
N
IS
H

C4
D
4

E4
E4

E4
G
4

F4
G
4

E4
C4

F4
D
4

F4
G
4

ST
A
RT

FI
N
IS
H

C4
D
4

E4
G
4

E4
G
4

F4

E4
F4

C4
E4

D
4

F4
G
4

F
ig

u
re

A
.3

6:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
7b

164

Excerpt identifier: mozart18

MOP(s) contained in this excerpt: mozart18a

Score:

24

24






  
  

 
  

     

   

    

  

  

Textbook analysis:

ZZZ ZZZZZZZZZ
V

ZZZ ZZZ Z Z
I

Z
V

� � Z
I II

Z ZZZZZ ZZZZZ

I

ZZZ
II

ZZZ

IF:

ZZZ ZZZ
I

ZZZZZZ
VI

ZZZZZ
II

ZZ

ParseMop-C analysis:

ZZZZZ ZZZZZ
I

ZZZZZZ ZZZZZZ ZZ
V

Z
I

� � ZZZZZ ZZ
II

ZZZ

I

Z Z
VI

ZZ

I

Z
F:

ZZ Z
II

ZZZZZ ZZZZ ZZZZZZZ
V

ZZ
I

Z Z
II

ZZZZ

165

ST
A
RT

FI
N
IS
H

F5

C6
C6

A
5

Bb
5

A
5

A
5

Bb
5

F5
A
5

Bb
5

G
5

F5
G
5

Bb
5

A
5

Bb
5

E5
G
5

E5
F5

G
5

C6

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

Bb
5

Bb
5

C6
C6

E5
F5

F5
G
5

E5
G
5

A
5

F5
A
5

A
5

G
5

Bb
5

C6
Bb
5

A
5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

C6
F5

C6
C6

E5
F5

F5
G
5

A
5

Bb
5

A
5

G
5

A
5

Bb
5

E5
G
5

Bb
5

Bb
5

A
5

F
ig

u
re

A
.3

7:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
m

oz
ar

t1
8a

166

Excerpt identifier: beethoven1

MOP(s) contained in this excerpt: beethoven1a, beethoven1b

Score:
Allegro






























24

24





















 


 

 


     






  
 

    

  

 

Textbook analysis:

ZZ ZZZZZ
V

ZZZ
V

Z
I

ZZZ� � ZZZZ ZZZZZZZZZ ZZZZZZZZZ

IF:

ZZZZZZZ ZZZZ ZZZZZZZZZZ ZZZZZ

Z
V II

ZZZ
I

ZZZZZ ZZZ Z
I

Z�� ZZ
V

ZZZZZZ ZZZ
F: I

ZZZZ ZZZ ZZZZ ZZZZZZZZZ ZZZZ

ParseMop-C analysis:

I

Z Z
V

ZZZZZ

V

Z ZZ� � ZZ ZZZZZZZ ZZZZZZZZZZ

IF:

ZZZZZZ ZZZ ZZZZZZZZZ ZZZZZ

167

V

Z
II

Z
I

ZZZZZZ ZZZ ZZ�� ZZ
I

ZZ
V

ZZZZZ ZZZZZZ
F: I

ZZZ ZZZZZZ ZZZZ ZZZZZZZZZZ ZZ

168

ST
A
RT

FI
N
IS
H

G
5

A
5

C6
C6

E5
F5

G
5

Bb
5

G
5

F5
F5

A
5

Bb
5

A
5

F5
E5

A
5

G
5

G
5

ST
A
RT

FI
N
IS
H

G
5

G
5

A
5

Bb
5

C6
C6

F5
A
5

E5
G
5

F5
A
5

Bb
5

F5
A
5

F5
E5

G
5

G
5

ST
A
RT

FI
N
IS
H

G
5

A
5

Bb
5

C6
C6

E5
F5

G
5

G
5

F5
F5

A
5

Bb
5

A
5

A
5

F5
E5

G
5

G
5

F
ig

u
re

A
.3

8:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

1a

169

ST
A
RT

FI
N
IS
H

C6
F5

A
5

Bb
5

F5
E5

G
5

C6
A
5

G
5

F5
A
5

Bb
5

G
5

G
5

F5
E5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

C6
C6

G
5

F5
E5

A
5

Bb
5

F5
G
5

A
5

F5
E5

G
5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

C6

F5
E5

G
5

C6
A
5

Bb
5

F5
G
5

A
5

F5
E5

G
5

F
ig

u
re

A
.3

9:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

1b

170

Excerpt identifier: beethoven2

MOP(s) contained in this excerpt: beethoven2a, beethoven2b

Score:
Allegretto






 

 


24

24






   

    



   

 

    



  

Textbook analysis:

ZZZ
I

ZZZ ZZ

F: I

ZZZ ZZ ZZ
V

Z
V

ZZZZZ ZZ�� Z ZZ

ZZZ
I

ZZZ ZZ

F: I

ZZZ

V

ZZ ZZ
V

Z
II

ZZZZ
�

I

Z� ZZ

ParseMop-C analysis:

ZZZ
V

Z
V I

Z ZZZ ZZ ZZ�
Z ZZ

F: I

ZZZ
�
Z

Z
I II

ZZ
V

ZZ
V

ZZ
I

ZZ ZZZZZ
F:

ZZZ
��

I

Z

171

ST
A
RT

FI
N
IS
H

C6
A
5

A
5

C6
G
5

G
5

A
5

Bb
5

F5
E5

F5
F5

ST
A
RT

FI
N
IS
H

G
5

G
5

A
5

Bb
5

C6
C6

E5
F5

F5

A
5

A
5

F5

ST
A
RT

FI
N
IS
H

G
5

A
5

Bb
5

C6
A
5

A
5

C6

G
5

E5
F5

F5

F5

F
ig

u
re

A
.4

0:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

2a

172

ST
A
RT

FI
N
IS
H

C6
F5

A
5

C6
A
5

F5
A
5

Bb
5

G
5

E5
E5

D
5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

C6
C6

E5
E5

D
5

A
5

A
5

F5

ST
A
RT

FI
N
IS
H

F5
G
5

A
5

Bb
5

C6
F5

C6

E5
E5

D
5

A
5

A
5

F
ig

u
re

A
.4

1:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

2b

173

Excerpt identifier: beethoven3

MOP(s) contained in this excerpt: beethoven3a, beethoven3b

Score: 

44

44



 
    

 
      


      

 
   

Textbook analysis:

ZZ ZZZZZZZZ Z
���

V

ZZZZZZZ
D: I

ZZZZ ZZZ Z ZZZZZZ ZZZZ

ZZ ZZZZZZZ
���

I

Z
V

Z ZZZZZZ
D: I

ZZZZ ZZZ ZZZZZZZZ ZZZZZ
ParseMop-C analysis:

ZZZZZZ ZZ
��� Z

V

ZZZZ Z
D: I

ZZ ZZ ZZZ ZZZZ

ZZZZZ
���

V

Z
I

ZZZZZ ZZ
D: I

ZZ ZZ ZZ ZZZZZZZ

174

ST
A
RT

FI
N
IS
H

A
4

F#
4

D
4

F#
4

G
4

G
4

E4
E4

F#
4

E4

E4

ST
A
RT

FI
N
IS
H

E4
F#
4

F#
4

E4

D
4

A
4

G
4

E4
F#
4

G
4

E4

ST
A
RT

FI
N
IS
H

E4
F#
4

F#
4

F#
4

E4

D
4

E4
A
4

G
4

E4
G
4

F
ig

u
re

A
.4

2:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

3a

175

ST
A
RT

FI
N
IS
H

A
4

F#
4

D
4

F#
4

G
4

G
4

D
4

E4
F#
4

E4

E4
D
4

ST
A
RT

FI
N
IS
H

D
4

E4
F#
4

F#
4

D
4

D
4

A
4

G
4

E4
F#
4

G
4

E4

ST
A
RT

FI
N
IS
H

D
4

E4
F#
4

F#
4

F#
4

D
4

D
4

E4
A
4

G
4

E4
G
4

F
ig

u
re

A
.4

3:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

3b

176

Excerpt identifier: beethoven4

MOP(s) contained in this excerpt: beethoven4a

Score:

34

34






 
    

 
     

   
       


   

Textbook analysis:

ZZ ZZZZ
V

ZZZ ZZZZ� Z ZZ� � ZZ
I

�� ZZZZZZZZ ZZZZZ
F: V I

ZZ ZZZ Z ZZZZ ZZZZZZZZ
II

ZZZ Z

ParseMop-C analysis:

ZZZZ ZZZ�� ZZZZ ZZZZZ ZZZ Z� � ��� ZZZZZ
I

ZZZZZZZ ZZZZ
II

ZZZZ
F: V

Z
I

ZZZZ ZZ ZZZ
V

ZZZZZ ZZZZZZ

177

ST
A
RT

FI
N
IS
H

F4
A
4

A
4

A
4

C5
C5

C5
C4

Bb
4

G
4

Bb
4

D
5

B4
F4

A
4

A
4

G
4

G
4

Bb
4

A
4

Bb
4

G
4

Bb
4

A
4

A
4

ST
A
RT

FI
N
IS
H

A
4

A
4

A
4

Bb
4

C5
C5

C5
Bb
4

Bb
4

Bb
4

A
4

A
4

A
4

C4

F4
Bb
4

G
4

D
5

B4

G
4

A
4

A
4

F4
G
4

G
4

ST
A
RT

FI
N
IS
H

A
4

Bb
4

C5

Bb
4

A
4

A
4

A
4

C4

F4

A
4

C5
B4

Bb
4

G
4

Bb
4

A
4

A
4

G
4

C5
D
5

F4
A
4

Bb
4

G
4

G
4

F
ig

u
re

A
.4

4:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

4a

178

Excerpt identifier: beethoven5

MOP(s) contained in this excerpt: beethoven5a

Score: 








34

34






 
  






  
  

 
 


Textbook analysis:

I V

ZZ ZZ
C: II

Z
IV

ZZZ
I

ZZ ZZ
II

ZZ
VI

ZZZ ZZZ ZZ�
I

ZZZZZ
V

Z

ParseMop-C analysis:

V

ZZ ZZ Z
VI

ZZZ
IV

ZZ
I

ZZZ
II

ZZ
II

ZZ ZZZ
C: I

ZZ
I

ZZ� ZZZZ
V

Z

179

ST
A
RT

FI
N
IS
H

C5
C5

D
5

B4
D
5

B4
C5

E5
C5

D
5

E5
F5

C5
D
5

E5

ST
A
RT

FI
N
IS
H

C5
D
5

E5
E5

D
5

C5

B4
C5

C5
D
5

F5
E5

B4
D
5

C5

ST
A
RT

FI
N
IS
H

C5

D
5

E5
D
5

C5

B4
C5

E5
F5

B4
C5

D
5

D
5

C5
E5

F
ig

u
re

A
.4

5:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
b

ee
th

ov
en

5a

180

Excerpt identifier: schubert1

MOP(s) contained in this excerpt: schubert1a, schubert1b

Score:
Andante




















 



   

















      
  

 
   


  
      

 


  

  


  
   

 


      
 


  
   

 


 




 

   




  

 





Textbook analysis:

ZZZZZ� Z Z���
V

ZZZ ZZ
V

ZZZ ZZZ
B
�
: I

ZZZ ZZZ ZZZ
II

ZZ
I

Z

V

ZZZ
� ��

Z Z
I

ZZZ
V

ZZZ

IB
�
:

ZZZ ZZ

I

ZZZ

ParseMop-C analysis:

ZZZZ������ ZZZZZZ
V

Z��� ZZZZ ZZZ
V

ZZZ ZZZZ
B
�
: I

ZZZ ZZZ ZZZZZ ZZZZZZZZZZ
I

Z
II

Z

181

V

ZZZZZZ
� ��

Z Z
I

ZZZZ
V

Z

IB
�
:

Z ZZZZ

I

ZZZZ

182

ST
A
RT

FI
N
IS
H

F4
D
5

D
5

G
4

Eb
5

A
4

Bb
4

C5
B4

C5
C5

C5
D
5

B4

ST
A
RT

FI
N
IS
H

C5
D
5

D
5

F4
C5

B4
G
4

Eb
5

A
4

Bb
4

C5
B4

C5
D
5

ST
A
RT

FI
N
IS
H

C5
D
5

D
5

D
5

F4

G
4

Eb
5

A
4

Bb
4

C5
B4

C5
C5

B4

F
ig

u
re

A
.4

6:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t1

a

183

ST
A
RT

FI
N
IS
H

D
6

Bb
5

Bb
5

A
5

F6
G
6

D
6

Eb
6

C6

ST
A
RT

FI
N
IS
H

Bb
5

C6
D
6

D
6

F6
G
6

Eb
6

A
5

Bb
5

ST
A
RT

FI
N
IS
H

Bb
5

C6
D
6

F6
Bb
5
A
5

G
6

D
6

Eb
6

F
ig

u
re

A
.4

7:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t1

b

184

Excerpt identifier: schubert2

MOP(s) contained in this excerpt: schubert2a, schubert2b

Score:
Allegretto




































248

248


































 

  

    

  


 


    


 


    

 

 






 




  

 


  

   









   


  

 



 








 

 





 


      


 

       


 

 





      

  

 








Textbook analysis:

I

ZZZZZZZ ZZZZZ������� ZZ
V

ZZZZ
II

ZZZZZ
VI

Z ZZZ
G
�
:

Z
I

Z ZZZZZZ ZZZ
V

ZZZZ

185

ZZZZZZZ������� ZZZZ
I

ZZZZ
VI

Z
G
�
: I

Z ZZZ
II

ZZ
V

ZZZ
IV

ZZZ ZZZZ

ParseMop-C analysis:

I

ZZZZZZZZZ�������
V

ZZZ
II

ZZZZZ
VI

Z
IG

�
:

Z Z ZZZZ ZZZZZ
V

ZZZZ ZZ

ZZZZZZZ ZZZ�������
I

ZZ ZZZ
VI

Z
IG

�
:

Z ZZ
V

ZZ
IV

ZZ
II

ZZZZ

186

ST
A
RT

FI
N
IS
H

Bb
4

Bb
4

A
b4

A
b4

Bb
4

G
b4

F4
G
b4

G
b4

D
b4

Eb
4

ST
A
RT

FI
N
IS
H

A
b4

Bb
4

Bb
4

G
b4

A
b4

Bb
4

G
b4

F4
G
b4

D
b4

Eb
4

ST
A
RT

FI
N
IS
H

A
b4

Bb
4

Bb
4

A
b4

Bb
4

G
b4

F4
G
b4

G
b4

D
b4

Eb
4

F
ig

u
re

A
.4

8:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t2

a

187

ST
A
RT

FI
N
IS
H

Bb
4

G
b4

A
b4

Bb
4

A
b4

F4
G
b4

G
b4

Eb
4

F4
F4

Eb
4

ST
A
RT

FI
N
IS
H

G
b4

A
b4

Bb
4

Bb
4

A
b4

F4
G
b4

G
b4

Eb
4

F4
F4

Eb
4

ST
A
RT

FI
N
IS
H

G
b4

A
b4

Bb
4

Bb
4

A
b4

F4
G
b4

G
b4

Eb
4

F4
F4

Eb
4

F
ig

u
re

A
.4

9:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t2

b

188

Excerpt identifier: schubert3

MOP(s) contained in this excerpt: schubert3a

Score: 




34

34






 


  
 
   

 
   


 

Textbook analysis:

ZZZ ZZZZZZ
I

ZZZZZZ
V

ZZZZZZ ZZZZ
I

� ���� ZZZZ
V

ZZZZZZZZ
V

ZZZZZ
I

Z
A
�
: V

ZZZ ZZZZ ZZZ
I

Z
V

ZZZZ
I

ZZ ZZ
I

Z
V

ParseMop-C analysis:

ZZZZZ ZZZZZZZZZZZ Z
V

ZZZ ZZZ
I

ZZ� ���� ZZZZZ
I

ZZ
V

ZZZZ ZZZZZZZZ
I

ZZ
A
�
: V

Z
I

ZZZ
V

ZZZZZZ
V

ZZZZZZ
I

ZZZZZZZ
V

ZZ
I

189

ST
A
RT

FI
N
IS
H

C5
Eb
5

C5
Eb
4

C5
A
b4

Eb
4

D
b5

A
b4

Bb
4

D
b5

A
b4

Bb
4

Bb
4

C5
Bb
4

C5
Bb
4

G
4

A
b4

ST
A
RT

FI
N
IS
H

C5

C5
C5

Bb
4

A
b4

A
b4

Eb
4

D
b5

Eb
5

A
b4

Bb
4

D
b5

Eb
4

Bb
4

Bb
4

G
4

A
b4

Bb
4

C5
C5

ST
A
RT

FI
N
IS
H

C5
Bb
4

A
b4

A
b4

Eb
4

A
b4

G
4

Eb
5

Bb
4

Bb
4

D
b5

D
b5

A
b4

Bb
4

C5
C5

Bb
4

C5
C5

Eb
4

F
ig

u
re

A
.5

0:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t3

a

190

Excerpt identifier: schubert4

MOP(s) contained in this excerpt: schubert4a

Score:



 


 

44

44

44










 
 

 
 

  







  




 

Textbook analysis:

I

Z Z� ������ ZZZ
VII

ZZ
G
�
:

Z
VII

Z

ParseMop-C analysis:

I

Z Z� ������ ZZZ
VII

ZZ
G
�
:

Z
VII

Z

191

ST
A
RT

FI
N
IS
H

Bb
4

G
b4

Cb
5

A
b4

Bb
4

A
b4

Bb
4

ST
A
RT

FI
N
IS
H

Bb
4

A
b4

G
b4

Cb
5

Bb
4

Bb
4

A
b4

ST
A
RT

FI
N
IS
H

Bb
4

A
b4

G
b4

Cb
5

Bb
4

Bb
4

A
b4

F
ig

u
re

A
.5

1:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
sc

h
u
b

er
t4

a

192

Excerpt identifier: chopin1

MOP(s) contained in this excerpt: chopin1a

Score: 
 




34

34







 





 


  



 

Textbook analysis:

ZZZZZ ZZ� Z��
I

ZZ ZZZZZZ ZZZZ
B
�
: I

ZZ ZZZ� ���
V

ZZ
I

ZZZ
IV

ZZZ

ParseMop-C analysis:

ZZZZZZ ZZZ��� ZZ
I

ZZZ ZZ ZZZZ
B
�
: I

ZZ �� ZZ
I

Z�
V

ZZZZZ
IV

ZZ

193

ST
A
RT

FI
N
IS
H

F5
F5

E5

F5
E5

F4
D
5

Eb
5

C5
D
5

Eb
5

Bb
4

Bb
4

C5
D
5

ST
A
RT

FI
N
IS
H

Bb
4

C5
C5

D
5

Eb
5

F5
F5

F5

D
5

Eb
5

F4
D
5

Bb
4

E5
E5

ST
A
RT

FI
N
IS
H

Bb
4

C5
D
5

Eb
5

F5
F5

D
5

Eb
5

F4
C5

D
5

Bb
4

F5
E5

E5

F
ig

u
re

A
.5

2:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
ch

op
in

1a

194

Excerpt identifier: chopin2

MOP(s) contained in this excerpt: chopin2a

Score:
Vivace

34

34






     
     

    
 


 


    

    



 


 

 
  

   
  


  




Textbook analysis:

Z ZZZZZZZZ ZZZ
V

Z ZZZ� ��� Z ZZZZ Z
I

ZZZZZZZ
I

ZZZZZZZZZ
VE

�
:

ZZ ZZZZ ZZ
I

ZZZ ZZZ
II

Z
V

ZZZZ

ParseMop-C analysis:

ZZZZ ZZ ZZZZZZZ ZZ
V

Z ZZZ� ��� ZZZZ ZZ
I

ZZZZZZ
I

ZZZZZZZZZ
VE

�
:

Z ZZZZZZ ZZ
I

ZZZZZ
IIV

ZZZ ZZZZZ

195

ST
A
RT

FI
N
IS
H

Bb
5

Bb
4

Bb
4

Bb
4

Eb
5

G
5

A
b5

G
5

A
b5

Bb
5

A
b5

F5
Eb
5

F5

F5
D
5

G
5

F5
G
5

F5
G
5

G
5

F5
Eb
5

A
b5

C6
Bb
5

Bb
5

A
b5

ST
A
RT

FI
N
IS
H

Eb
5

F5
G
5

A
b5

Bb
5

A
b5

G
5

Bb
4

Bb
4

F5
G
5

G
5

A
b5

A
b5

F5
Bb
5

Bb
5

G
5

C6
A
b5

Bb
4

Bb
5

Eb
5

F5
F5

D
5

F5
G
5

Eb
5

ST
A
RT

FI
N
IS
H

Eb
5

F5
G
5

A
b5

Bb
5

A
b5

G
5

Bb
4

Bb
4

G
5

A
b5

F5
G
5

Bb
5

F5
G
5

A
b5

Bb
5

A
b5

Bb
4

C6
Eb
5

F5
Bb
5

F5
D
5

F5
G
5

Eb
5

F
ig

u
re

A
.5

3:
M

O
P

s
p
ro

d
u
ce

d
b
y
P
a
r
se

M
o
p

-A
,

-B
,

an
d

-C
fo

r
ch

op
in

2a

196

APPENDIX B

MAXIMUM ACCURACY AS A FUNCTION OF RANK

Tables B.1 through B.6 show the maximum accuracy of the top n ranked ParseMop

analyses that were produced through leave-one-out cross-validation. The six tables account

for all combinations of the the three ParseMop variants and the two accuracy metrics:

triangle- and edge-based.

197

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.57 0.59 0.59 0.60 0.64 0.66
bach2 0.83 1.00 1.00 1.00 1.00 1.00
bach3 0.41 0.53 0.65 0.65 0.65 0.71
handel1 0.39 0.58 0.61 0.61 0.64 0.67
haydn1 0.48 0.48 0.52 0.55 0.58 0.61
haydn2 0.36 0.45 0.50 0.55 0.64 0.77
haydn3 0.89 0.89 0.89 0.89 0.89 0.89
haydn4 0.44 0.56 0.56 1.00 1.00 1.00
haydn5 0.12 0.75 1.00 1.00 1.00 1.00
haydn6 0.29 0.57 0.79 0.79 0.79 1.00
haydn7 1.00 1.00 1.00 1.00 1.00 1.00
clementi1 0.64 0.64 0.64 0.82 0.82 1.00
mozart1 0.87 0.87 0.87 0.87 0.87 0.93
mozart2 0.66 0.81 0.81 0.84 0.84 0.84
mozart3 0.34 0.40 0.46 0.49 0.49 0.54
mozart4 0.54 0.62 0.65 0.85 0.85 0.85
mozart5 0.33 0.47 0.47 0.50 0.60 0.63
mozart6 0.48 0.52 0.52 0.57 0.67 0.71
mozart7 0.61 0.61 0.61 0.65 0.65 0.78
mozart8 0.47 0.53 0.53 0.55 0.60 0.62
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.61 0.61 0.67 0.67 0.72 0.78
mozart11 0.42 0.46 0.50 0.54 0.65 0.73
mozart12 0.43 1.00 1.00 1.00 1.00 1.00
mozart13 0.33 1.00 1.00 1.00 1.00 1.00
mozart14 0.78 1.00 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 0.56 0.62 0.69 0.75 0.81 0.81
mozart17 0.18 0.32 0.32 0.36 0.36 0.43
mozart18 0.87 0.91 0.91 0.91 0.91 0.91
beethoven1 0.64 0.67 0.75 0.75 0.75 0.83
beethoven2 0.75 0.75 0.83 0.83 0.83 0.92
beethoven3 0.48 0.70 0.91 1.00 1.00 1.00
beethoven4 0.60 0.72 0.80 0.80 0.80 0.88
beethoven5 0.73 1.00 1.00 1.00 1.00 1.00
schubert1 0.39 0.43 0.43 0.52 0.52 0.61
schubert2 0.74 0.83 0.83 0.91 0.91 0.91
schubert3 0.45 0.60 0.60 0.60 0.60 0.70
schubert4 0.71 1.00 1.00 1.00 1.00 1.00
chopin1 0.60 0.60 0.67 0.73 0.73 0.73
chopin2 0.48 0.52 0.52 0.52 0.52 0.59

Table B.1: Maximum triangle accuracy obtained using ParseMop-A for each musical ex-
cerpt at various rank levels.

198

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.64 0.68 0.68 0.68 0.71 0.75
bach2 0.91 1.00 1.00 1.00 1.00 1.00
bach3 0.56 0.69 0.75 0.75 0.75 0.81
handel1 0.47 0.62 0.66 0.66 0.66 0.69
haydn1 0.59 0.59 0.62 0.66 0.69 0.69
haydn2 0.48 0.52 0.57 0.62 0.67 0.81
haydn3 0.91 0.91 0.91 0.91 0.91 0.91
haydn4 0.50 0.62 0.62 1.00 1.00 1.00
haydn5 0.29 0.86 1.00 1.00 1.00 1.00
haydn6 0.46 0.62 0.85 0.85 0.85 1.00
haydn7 1.00 1.00 1.00 1.00 1.00 1.00
clementi1 0.70 0.70 0.80 0.90 0.90 1.00
mozart1 0.93 0.93 0.93 0.93 0.93 0.96
mozart2 0.70 0.83 0.83 0.90 0.90 0.90
mozart3 0.42 0.48 0.55 0.58 0.58 0.64
mozart4 0.58 0.67 0.75 0.92 0.92 0.92
mozart5 0.41 0.52 0.52 0.55 0.66 0.69
mozart6 0.50 0.55 0.70 0.70 0.75 0.80
mozart7 0.73 0.73 0.73 0.77 0.77 0.86
mozart8 0.56 0.62 0.62 0.63 0.67 0.69
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.65 0.65 0.71 0.71 0.76 0.82
mozart11 0.52 0.56 0.64 0.68 0.72 0.84
mozart12 0.50 1.00 1.00 1.00 1.00 1.00
mozart13 0.40 1.00 1.00 1.00 1.00 1.00
mozart14 0.88 1.00 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 0.60 0.67 0.73 0.80 0.87 0.87
mozart17 0.27 0.35 0.38 0.42 0.42 0.50
mozart18 0.91 0.95 0.95 0.95 0.95 0.95
beethoven1 0.76 0.79 0.85 0.85 0.85 0.91
beethoven2 0.82 0.82 0.91 0.91 0.91 0.95
beethoven3 0.52 0.76 0.95 1.00 1.00 1.00
beethoven4 0.71 0.79 0.83 0.83 0.83 0.92
beethoven5 0.79 1.00 1.00 1.00 1.00 1.00
schubert1 0.43 0.48 0.52 0.62 0.62 0.67
schubert2 0.76 0.86 0.86 0.95 0.95 0.95
schubert3 0.63 0.74 0.74 0.74 0.79 0.84
schubert4 0.83 1.00 1.00 1.00 1.00 1.00
chopin1 0.64 0.64 0.71 0.79 0.79 0.79
chopin2 0.61 0.64 0.64 0.64 0.64 0.68

Table B.2: Maximum edge accuracy obtained using ParseMop-A for each musical excerpt
at various rank levels.

199

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.84 0.84 0.84 0.84 0.86 0.90
bach2 0.83 1.00 1.00 1.00 1.00 1.00
bach3 0.76 0.88 0.88 1.00 1.00 1.00
handel1 0.76 0.82 0.88 0.88 0.88 0.91
haydn1 0.71 0.84 0.84 0.84 0.84 0.89
haydn2 0.82 0.91 0.91 1.00 1.00 1.00
haydn3 1.00 1.00 1.00 1.00 1.00 1.00
haydn4 1.00 1.00 1.00 1.00 1.00 1.00
haydn5 1.00 1.00 1.00 1.00 1.00 1.00
haydn6 1.00 1.00 1.00 1.00 1.00 1.00
haydn7 1.00 1.00 1.00 1.00 1.00 1.00
clementi1 1.00 1.00 1.00 1.00 1.00 1.00
mozart1 0.87 0.93 1.00 1.00 1.00 1.00
mozart2 0.91 0.91 0.91 0.91 0.91 1.00
mozart3 1.00 1.00 1.00 1.00 1.00 1.00
mozart4 0.92 0.92 0.92 0.92 0.92 0.92
mozart5 0.90 0.90 0.90 1.00 1.00 1.00
mozart6 0.67 0.81 0.81 0.86 0.86 0.86
mozart7 0.87 1.00 1.00 1.00 1.00 1.00
mozart8 0.70 0.75 0.75 0.75 0.75 0.79
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.89 1.00 1.00 1.00 1.00 1.00
mozart11 0.85 0.85 0.85 0.92 0.92 1.00
mozart12 1.00 1.00 1.00 1.00 1.00 1.00
mozart13 1.00 1.00 1.00 1.00 1.00 1.00
mozart14 0.78 1.00 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 1.00 1.00 1.00 1.00 1.00 1.00
mozart17 0.71 0.86 1.00 1.00 1.00 1.00
mozart18 1.00 1.00 1.00 1.00 1.00 1.00
beethoven1 0.64 0.81 0.89 0.92 0.92 0.92
beethoven2 0.75 0.92 0.92 0.92 0.92 0.92
beethoven3 1.00 1.00 1.00 1.00 1.00 1.00
beethoven4 1.00 1.00 1.00 1.00 1.00 1.00
beethoven5 1.00 1.00 1.00 1.00 1.00 1.00
schubert1 1.00 1.00 1.00 1.00 1.00 1.00
schubert2 0.83 0.91 0.91 0.91 0.91 0.91
schubert3 0.55 0.65 0.70 0.80 0.80 0.90
schubert4 1.00 1.00 1.00 1.00 1.00 1.00
chopin1 1.00 1.00 1.00 1.00 1.00 1.00
chopin2 0.62 0.69 0.76 0.76 0.76 0.83

Table B.3: Maximum triangle accuracy obtained using ParseMop-B for each musical ex-
cerpt at various rank levels.

200

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.89 0.89 0.89 0.89 0.91 0.93
bach2 0.91 1.00 1.00 1.00 1.00 1.00
bach3 0.81 0.94 0.94 1.00 1.00 1.00
handel1 0.81 0.88 0.91 0.91 0.91 0.94
haydn1 0.79 0.86 0.86 0.88 0.88 0.94
haydn2 0.86 0.95 0.95 1.00 1.00 1.00
haydn3 1.00 1.00 1.00 1.00 1.00 1.00
haydn4 1.00 1.00 1.00 1.00 1.00 1.00
haydn5 1.00 1.00 1.00 1.00 1.00 1.00
haydn6 1.00 1.00 1.00 1.00 1.00 1.00
haydn7 1.00 1.00 1.00 1.00 1.00 1.00
clementi1 1.00 1.00 1.00 1.00 1.00 1.00
mozart1 0.93 0.96 1.00 1.00 1.00 1.00
mozart2 0.93 0.93 0.93 0.93 0.93 1.00
mozart3 1.00 1.00 1.00 1.00 1.00 1.00
mozart4 0.96 0.96 0.96 0.96 0.96 0.96
mozart5 0.93 0.93 0.93 1.00 1.00 1.00
mozart6 0.75 0.85 0.85 0.90 0.90 0.90
mozart7 0.91 1.00 1.00 1.00 1.00 1.00
mozart8 0.75 0.81 0.81 0.81 0.81 0.83
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.94 1.00 1.00 1.00 1.00 1.00
mozart11 0.92 0.92 0.92 0.96 0.96 1.00
mozart12 1.00 1.00 1.00 1.00 1.00 1.00
mozart13 1.00 1.00 1.00 1.00 1.00 1.00
mozart14 0.88 1.00 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 1.00 1.00 1.00 1.00 1.00 1.00
mozart17 0.85 0.92 1.00 1.00 1.00 1.00
mozart18 1.00 1.00 1.00 1.00 1.00 1.00
beethoven1 0.76 0.88 0.94 0.94 0.94 0.94
beethoven2 0.82 0.95 0.95 0.95 0.95 0.95
beethoven3 1.00 1.00 1.00 1.00 1.00 1.00
beethoven4 1.00 1.00 1.00 1.00 1.00 1.00
beethoven5 1.00 1.00 1.00 1.00 1.00 1.00
schubert1 1.00 1.00 1.00 1.00 1.00 1.00
schubert2 0.86 0.95 0.95 0.95 0.95 0.95
schubert3 0.68 0.74 0.79 0.84 0.84 0.95
schubert4 1.00 1.00 1.00 1.00 1.00 1.00
chopin1 1.00 1.00 1.00 1.00 1.00 1.00
chopin2 0.79 0.82 0.86 0.86 0.86 0.89

Table B.4: Maximum edge accuracy obtained using ParseMop-B for each musical excerpt
at various rank levels.

201

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.57 0.57 0.57 0.59 0.59 0.62
bach2 0.50 0.83 1.00 1.00 1.00 1.00
bach3 0.24 0.47 0.47 0.53 0.65 0.88
handel1 0.61 0.61 0.64 0.67 0.70 0.70
haydn1 0.35 0.48 0.48 0.58 0.58 0.65
haydn2 0.45 0.73 0.77 0.82 0.82 0.91
haydn3 0.86 0.86 0.86 0.86 0.91 0.91
haydn4 1.00 1.00 1.00 1.00 1.00 1.00
haydn5 1.00 1.00 1.00 1.00 1.00 1.00
haydn6 0.57 0.79 1.00 1.00 1.00 1.00
haydn7 0.74 0.79 0.89 1.00 1.00 1.00
clementi1 1.00 1.00 1.00 1.00 1.00 1.00
mozart1 0.87 0.87 0.87 0.93 0.93 0.93
mozart2 0.91 0.91 0.91 0.91 0.91 0.91
mozart3 0.74 0.74 0.77 0.94 0.94 0.94
mozart4 0.77 0.92 0.92 0.92 0.92 1.00
mozart5 0.43 0.43 0.57 0.60 0.63 0.67
mozart6 0.48 0.62 0.71 0.71 0.71 0.76
mozart7 0.43 0.70 0.78 0.78 0.83 0.83
mozart8 0.40 0.40 0.43 0.45 0.45 0.49
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.67 0.67 0.67 0.78 0.78 0.78
mozart11 0.65 0.65 0.73 0.73 0.73 0.81
mozart12 0.29 0.43 1.00 1.00 1.00 1.00
mozart13 1.00 1.00 1.00 1.00 1.00 1.00
mozart14 0.56 0.78 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 1.00 1.00 1.00 1.00 1.00 1.00
mozart17 0.25 0.36 0.54 0.54 0.54 0.57
mozart18 0.57 0.57 0.65 0.70 0.70 0.87
beethoven1 0.58 0.69 0.69 0.81 0.81 0.81
beethoven2 0.75 0.75 0.79 0.92 0.92 1.00
beethoven3 0.70 0.74 0.83 1.00 1.00 1.00
beethoven4 0.76 0.84 0.88 0.92 0.92 0.92
beethoven5 0.73 1.00 1.00 1.00 1.00 1.00
schubert1 0.43 0.48 0.65 0.65 0.65 1.00
schubert2 0.78 0.83 0.83 0.83 0.83 0.83
schubert3 0.40 0.40 0.45 0.55 0.55 0.70
schubert4 1.00 1.00 1.00 1.00 1.00 1.00
chopin1 0.80 0.80 0.80 1.00 1.00 1.00
chopin2 0.48 0.48 0.52 0.55 0.55 0.59

Table B.5: Maximum triangle accuracy obtained using ParseMop-C for each musical ex-
cerpt at various rank levels.

202

Excerpt Accuracy Max acc. Max acc. Max acc. Max acc. Max acc.
rank 1 ranks 1–5 ranks 1–20 ranks 1–50 ranks 1–100 ranks 1–500

bach1 0.62 0.68 0.68 0.68 0.71 0.71
bach2 0.64 0.91 1.00 1.00 1.00 1.00
bach3 0.38 0.56 0.56 0.69 0.81 0.94
handel1 0.62 0.62 0.66 0.69 0.72 0.72
haydn1 0.45 0.59 0.59 0.66 0.69 0.72
haydn2 0.48 0.76 0.81 0.86 0.90 0.95
haydn3 0.91 0.91 0.91 0.91 0.94 0.94
haydn4 1.00 1.00 1.00 1.00 1.00 1.00
haydn5 1.00 1.00 1.00 1.00 1.00 1.00
haydn6 0.69 0.85 1.00 1.00 1.00 1.00
haydn7 0.78 0.89 0.94 1.00 1.00 1.00
clementi1 1.00 1.00 1.00 1.00 1.00 1.00
mozart1 0.93 0.93 0.93 0.96 0.96 0.96
mozart2 0.93 0.93 0.93 0.93 0.93 0.93
mozart3 0.79 0.79 0.82 0.97 0.97 0.97
mozart4 0.88 0.96 0.96 0.96 0.96 1.00
mozart5 0.45 0.45 0.59 0.62 0.69 0.72
mozart6 0.60 0.70 0.80 0.80 0.80 0.85
mozart7 0.59 0.82 0.86 0.86 0.91 0.91
mozart8 0.46 0.46 0.48 0.50 0.50 0.52
mozart9 1.00 1.00 1.00 1.00 1.00 1.00
mozart10 0.71 0.71 0.76 0.82 0.82 0.82
mozart11 0.72 0.72 0.76 0.84 0.84 0.88
mozart12 0.33 0.50 1.00 1.00 1.00 1.00
mozart13 1.00 1.00 1.00 1.00 1.00 1.00
mozart14 0.75 0.88 1.00 1.00 1.00 1.00
mozart15 1.00 1.00 1.00 1.00 1.00 1.00
mozart16 1.00 1.00 1.00 1.00 1.00 1.00
mozart17 0.38 0.50 0.65 0.65 0.65 0.69
mozart18 0.64 0.64 0.73 0.77 0.77 0.91
beethoven1 0.71 0.76 0.79 0.85 0.85 0.85
beethoven2 0.82 0.82 0.86 0.95 0.95 1.00
beethoven3 0.81 0.86 0.86 1.00 1.00 1.00
beethoven4 0.83 0.88 0.92 0.96 0.96 0.96
beethoven5 0.79 1.00 1.00 1.00 1.00 1.00
schubert1 0.48 0.52 0.67 0.67 0.67 1.00
schubert2 0.81 0.86 0.86 0.90 0.90 0.90
schubert3 0.42 0.47 0.53 0.58 0.63 0.74
schubert4 1.00 1.00 1.00 1.00 1.00 1.00
chopin1 0.86 0.86 0.86 1.00 1.00 1.00
chopin2 0.57 0.57 0.57 0.64 0.64 0.71

Table B.6: Maximum edge accuracy obtained using ParseMop-C for each musical excerpt
at various rank levels.

203

BIBLIOGRAPHY

A. Abbott and A. Tsay. Sequence analysis and optimal matching methods in sociology:
Review and prospect. Sociological Methods & Research, 29(1):3–33, Aug. 2000. doi: 10.
1177/0049124100029001001.

I. D. Bent and A. Pople. Analysis. In Grove Music Online. Oxford Music Online. Oxford
University Press, May 2013. URL http://www.oxfordmusiconline.com/subscriber/

article/grove/music/41862pg1. Web.

R. Bod. Probabilistic grammars for music. In Proceedings of the Belgian-Dutch Conference
on Artificial Intelligence, 2001.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

M. Brown. Explaining Tonality. University of Rochester Press, 2005.

M. Brown and D. J. Dempster. The scientific image of music theory. Journal of Music
Theory, 33(1):65–106, 1989.

A. Cadwallader and D. Gagné. Analysis of Tonal Music: A Schenkerian Approach. Oxford
University Press, Oxford, 1998.

N. Cook. Towards the compleat musicologist? Invited talk, Sixth International Conference
on Music Information Retrieval, Sept. 2005.

M. Črepinšek and L. Mernik. An efficient representation for solving Catalan number related
problems. International Journal of Pure and Applied Mathematics, 56(4):598–604, 2009.

J. P. da Costa and C. Soares. A weighted rank measure of correlation. Australian & New
Zealand Journal of Statistics, 47:515–529, 2005.

C. Dahlhaus, J. Anderson, C. Wilson, R. Cohn, and B. Hyer. Harmony. In Grove Music
Online. Oxford Music Online. Oxford University Press, May 2013. URL http://www.

oxfordmusiconline.com/subscriber/article/grove/music/50818. Web.

R. B. Dannenberg. A brief survey of music representation issues, techniques, and systems.
Computer Music Journal, 17(3):20–30, 1993.

204

W. Drabkin. Part-writing. In Grove Music Online. Oxford Music Online. Oxford Univer-
sity Press, May 2013. URL http://www.oxfordmusiconline.com/subscriber/article/

grove/music/20989. Web.

A. Forte. Schenker’s conception of musical structure. Journal of Music Theory, 3(1):1–30,
Apr. 1959.

A. Forte and S. E. Gilbert. Introduction to Schenkerian Analysis. W. W. Norton and
Company, New York, 1982a.

A. Forte and S. E. Gilbert. Instructor’s Manual for “Introduction to Schenkerian Analysis”.
W. W. Norton and Company, New York, 1982b.

R. E. Frankel, S. J. Rosenschein, and S. W. Smoliar. A LISP-based system for the study of
Schenkerian analysis. Computers and the Humanities, 10(1):21–32, 1976.

R. E. Frankel, S. J. Rosenschein, and S. W. Smoliar. Schenker’s theory of tonal music—
its explication through computational processes. International Journal of Man-Machine
Studies, 10(2):121–138, 1978. doi: 10.1016/S0020-7373(78)80008-X.

É. Gilbert and D. Conklin. A probabilistic context-free grammar for melodic reduction.
In Proceedings of the International Workshop on Artificial Intelligence and Music, 20th
International Joint Conference on Artificial Intelligence, pages 83–94, Hyderabad, India,
2007.

I. Godt. New voices and old theory. The Journal of Musicology, 3(3):312–319, 1984.

Y. Goldenberg. “Journal of Music Theory” over the years: Content analysis of the articles
and related aspects. Journal of Music Theory, 50(1):25–63, 2006.

M. Hamanaka and S. Tojo. Interactive GTTM analyzer. In Proceedings of the 10th Inter-
national Society for Music Information Retrieval Conference, pages 291–296, 2009.

M. Hamanaka, K. Hirata, and S. Tojo. ATTA: Automatic time-span tree analyzer based on
extended GTTM. In Proceedings of the Sixth International Conference on Music Infor-
mation Retrieval, pages 358–365, 2005.

M. Hamanaka, K. Hirata, and S. Tojo. Implementing “A Generative Theory of Tonal Music”.
Journal of New Music Research, 35(4):249–277, 2006.

M. Hamanaka, K. Hirata, and S. Tojo. ATTA: Implementing GTTM on a computer. In
Proceedings of the Eighth International Conference on Music Information Retrieval, pages
285–286, 2007.

205

V. M. Jiménez and A. Marzal. Computation of the n best parse trees for weighted and
stochastic context-free grammars. In F. J. Ferri, J. M. Iñesta, A. Amin, and P. Pudil,
editors, Advances in Pattern Recognition, volume 1876 of Lecture Notes in Computer
Science, pages 183–192. Springer-Verlag, 2000.

N. L. Johnson, A. W. Kemp, and S. Kotz. Univariate Discrete Distributions. John Wiley &
Sons, Inc., Hoboken, NJ, 2005.

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Speech Recognition, and Computational Linguistics. Prentice-Hall,
second edition, 2009.

Y. Y. Kang. Defending music theory in a multicultural curriculum. College Music Sympo-
sium, 46:45–63, 2006.

M. Kassler. Proving musical theorems I: The middleground of Heinrich Schenker’s theory
of tonality. Technical Report 103, Basser Department of Computer Science, School of
Physics, The University of Sydney, Sydney, Australia, Aug. 1975.

M. Kassler. APL applied in music theory. APL Quote Quad, 18(2):209–214, 1987. ISSN
0163-6006. doi: http://doi.acm.org/10.1145/377719.55654.

P. B. Kirlin and D. D. Jensen. Probabilistic modeling of hierarchical music analysis. In
Proceedings of the 12th International Society for Music Information Retrieval Conference,
2011.

F. Lerdahl and R. Jackendoff. A Generative Theory of Tonal Music. MIT Press, Cambridge,
MA, 1983.

A. Marsden. Generative structural representation of tonal music. Journal of New Music
Research, 34(4):409–428, Dec. 2005a. doi: 10.1080/09298210600578295.

A. Marsden. Towards Schenkerian analysis by computer: A reductional matrix. In Proceed-
ings of the International Computer Music Conference, pages 247–250, 2005b.

A. Marsden. Automatic derivation of musical structure: A tool for research on Schenkerian
analysis. In Proceedings of the Eighth International Conference on Music Information
Retrieval, pages 55–58, 2007.

A. Marsden. “What was the question?”: Music analysis and the computer. In T. Craw-
ford and L. Gibson, editors, Modern Methods for Musicology, pages 137–147. Ashgate,
Farnham, England, 2009.

A. Marsden. Schenkerian analysis by computer: A proof of concept. Journal of New Music
Research, 39(3):269–289, 2010. doi: 10.1080/09298215.2010.503898.

206

A. Marsden and G. A. Wiggins. Schenkerian reduction as search. In Proceedings of the
Fourth Conference on Interdisciplinary Musicology, Thessaloniki, Greece, July 2008.

P. Mavromatis and M. Brown. Parsing context-free grammars for music: A computational
model of Schenkerian analysis. In Proceedings of the 8th International Conference on
Music Perception & Cognition, pages 414–415, 2004.

J. R. Meehan. An artificial intelligence approach to tonal music theory. Computer Music
Journal, 4(2):60–64, 1980.

A. T. Merritt. Undergraduate training in music theory. College Music Symposium, 40:91–
100, 2000. ISSN 00695696. Originally published in College Music Symposium, Volume 5,
1965.

C. V. Palisca and I. D. Bent. Theory, theorists. In Grove Music Online. Oxford Music
Online. Oxford University Press, May 2013. URL http://www.oxfordmusiconline.com/

subscriber/article/grove/music/44944. Web.

T. Pankhurst. SchenkerGUIDE: A Brief Handbook and Website for Schenkerian Analysis.
Routledge, New York, 2008.

F. Provost and P. Domingos. Tree induction for probability-based ranking. Machine Learn-
ing, 52(3):199–215, Sept. 2003. ISSN 0885-6125. doi: 10.1023/A:1024099825458.

J. Rahn. On some computational models of music theory. Computer Music Journal, 4(2):
66–72, 1980.

S. Rings. Tonality and Transformation. Oxford University Press, New York, 2011.

F. Salzer. Structural Hearing: Tonal Coherence in Music. Charles Boni, New York, 1952.

H. Schenker. Der Tonwille: Pamphlets in Witness of the Immutable Laws of Music. Oxford
University Press, New York, 1921. Edited by William Drabkin, translated by Ian Bent.

H. Schenker. Der Freie Satz. Universal Edition, Vienna, 1935. Published in English as Free
Composition, translated and edited by E. Oster, Longman, 1979.

S. W. Smoliar. A computer aid for Schenkerian analysis. Computer Music Journal, 2(4):
41–59, 1980.

A. Volk and A. Honingh. Mathematical and computational approaches to music: Challenges
in an interdisciplinary enterprise. Journal of Mathematics and Music, 6(2):73–81, July
2012. doi: 10.1080/17459737.2012.704154.

A. Volk, F. Wiering, and P. van Kranenburg. Unfolding the potential of computational
musicology. Proceedings of the International Conference on Informatics and Semiotics in
Organisations, pages 137–144, 2011.

207

A. Whittall. Analysis. In The Oxford Companion to Music. Oxford Music Online. Oxford
University Press, May 2013. URL http://www.oxfordmusiconline.com/subscriber/

article/opr/t114/e257. Web.

T. Winograd. Linguistics and the computer analysis of tonal harmony. Journal of Music
Theory, 12(1):2–49, 1968.

J. Yust. Formal Models of Prolongation. PhD thesis, University of Washington, 2006.

208

