
PROBABILISTIC MODELING OF HIERARCHICAL MUSIC ANALYSIS

Phillip B. Kirlin and David D. Jensen
Department of Computer Science, University of Massachusetts Amherst

{pkirlin,jensen}@cs.umass.edu

ABSTRACT

Hierarchical music analysis, as exemplified by Schenkerian
analysis, describes the structure of a musical composition
by a hierarchy among its notes. Each analysis defines a set
of prolongations, where musical objects persist in time even
though others are present. We present a formal model for
representing hierarchical music analysis, probabilistic in-
terpretations of that model, and an efficient algorithm for
computing the most probable analysis under these interpre-
tations. We represent Schenkerian analyses as maximal out-
erplanar graphs (MOPs). We use this representation to en-
code the largest known data set of computer-processable
Schenkerian analyses, and we use these data to identify sta-
tistical regularities in the human-generated analyses. We
show that a dynamic programming algorithm can be ap-
plied to these regularities to identify the maximum likeli-
hood analysis for a given piece of music.

1. INTRODUCTION

Schenkerian analysis [13] is a widely used and well-developed
approach to music analysis. Analyses interpret composi-
tions as a hierarchical structure of musical events, allow-
ing a user to view a tonal composition as a collection of
recursive musical elaborations of some fundamental struc-
ture. The method of analysis starts from the original com-
position and produces a sequence of intermediate analyses
illustrating successive simplifications or reductions of the
musical structure of the piece, ultimately arriving at an irre-
ducible background structure. Each reduction is a claim that
a group of musical events (such as notes, intervals, or har-
monies) X derives its function within the composition from
the presence of another group of events Y , and therefore
the overarching musical structure of the collection X ∪Y is
determined predominantly by the events in Y . In Schenke-
rian terms, we often say the events in X constitute a pro-
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longation of the events in Y , in that the events in Y remain
“in effect without being literally represented at every mo-
ment.” [2]

Schenker’s ideas may be viewed as a set of tools for con-
structing a hierarchical analysis of a composition according
to the analyst’s own musical intuition, or as theory of tonal-
ity such that every tonal composition, and only tonal compo-
sitions, should be derivable from the “rules” of Schenkerian
analysis [1, 15].

Opinions differ about the underlying goals of Schenke-
rian analysis. However, one thing is clear: Schenker’s ideas
alone do not prescribe an unambiguous and complete algo-
rithm for analysis. That said, generations of music theo-
rists have used Schenker’s ideas to construct analyses. In
this paper, we pursue an empirical strategy for discovering
the underlying regularities of those analyses and producing
new analyses based on those regularities. Specifically, we
derive statistical regularities from the largest known corpus
of machine-readable Schenkerian analyses, and we identify
an algorithm for deriving the maximum likelihood analysis,
given these regularities. We demonstrate that the algorithm
can reproduce the likelihood ranking implied by a proba-
bility distribution over possible analyses. Together, these
findings provide the foundation of an empirical strategy for
unlocking the basic concepts underlying any method of hi-
erarchical music analysis.

2. REPRESENTATIONS AND ALGORITHMS FOR
SCHENKERIAN ANALYSES

Tree-like data structures are natural representations for hier-
archies. Combined with the Schenkerian idea of the analysis
procedure revealing multiple levels of musical structure in a
composition, many researchers have used different types of
trees to represent an analysis and the structural levels within.

A commonly used tree representation of an analysis uses
leaf nodes to represent notes or chords of the original com-
position, and interior nodes to represent Schenkerian reduc-
tions of each node’s children. This formulation has been
used by Frankel, Rosenschein and Smoliar [3,4], Rahn [12],
Lerdahl and Jackendoff [8], Marsden [9, 10] and Kirlin [7].
Algorithms for analysis that use such representations have
had varying levels of success [6, 10, 11, 14].



Yust argues for using a hierarchy of melodic intervals—
the spaces between the notes—rather than the notes or chords
themselves. He contends that such a hierarchy of inter-
vals better reflects Schenker’s original ideas and reduces
the size of the search space of analyses [15]. Mavromatis
and Brown [11] and Gilbert and Conklin [5] also suggest
an interval-based hierarchy would alleviate some represen-
tational problems.

Consider Figure 1(a), an arpeggiation of a G major triad
with passing tones between the notes of the chord. Rep-
resenting this musical figure as a hierarchy of notes forces
us to choose a single parent note for each passing tone, ob-
scuring the nature of a passing tone as a voice-leading con-
nection from one note to another. Using a hierarchy among
intervals between the notes, however, allows us to represent
the musical structure as the tree in Figure 1(b). If we then
replace the nodes of this tree with edges, we obtain the rep-
resentation in Figure 1(c), a particular kind of graph called
a maximal outerplanar graph, or MOP, a representation for
musical analysis first suggested by Yust [15]. MOPs are
isomorphic to binary trees representing interval hierarchies
such as that in Figure 1(b), though because the MOP does
not duplicate notes as the tree does, it is a more compact
representation of the hierarchy.
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Figure 1. (a) An arpeggiation of a chord with passing tones.
(b) A hierarchy among the melodic intervals in the arpeggia-
tion. (c) The MOP corresponding to the arpeggiation.

Every MOP defined on a given sequence of notes is a
triangulation of the polygon formed by the edges between
consecutive notes and the edge from the first note to the
last note. Each triangle in the MOP specifies a prolongation
among three notes; we will occasionally refer to a triangle
as containing two parent notes and a single child note, or
a single parent interval and two child intervals. Either in-
terpretation is musically correct: the left parent note is pro-
longed by the child note during the time span between the
left and right parent notes, or the melodic interval between
the left and right parent notes is prolonged by the motion to
and away from the child note.

Because every prolongation requires two parent notes, in-
complete prolongations, such as incomplete neighbor notes,
present a representational challenge in MOPs. Yust argues

that in these situations, it is appropriate to have the nearest
structural note substitute for the missing parent note. To al-
low for incomplete prolongations at the beginning or ending
of a piece, the MOP model places special “initiation” and
“termination” events at the beginning and ending of the pas-
sage being analyzed that may be used as parents for such
prolongations.

The MOP model offers a new look at representation of
analyses that more closely parallels Schenkerian analysis in
practice due to the MOP’s emphasis on preserving voice
leading connections. Further discussion of MOPs may be
found in Yust’s dissertation [15].

3. A GENERALIZATION OF MOP: OPC

The definition of a MOP stated above can only handle a sin-
gle monophonic sequence of notes, though the model can
be extended to allow for a single structure to represent the
analysis of a contrapuntal or polyphonic composition [15].
However, in the interest of simplicity, we have chosen to
store such analyses as collections of separate MOPs occur-
ring simultaneously in time. For instance, in a two-voice
composition, there would be one MOP to represent the up-
per voice, and one MOP to represent the lower voice. Tak-
ing both MOPs together as a collective representation of an
analysis gives us an OPC (outerplanar graph collection).

The OPC representation also relaxes one restriction on
the constituent MOPs, namely that the polygon formed by
the edges connecting the notes of the composition must be
completely triangulated. This is allowed because many anal-
yses done by humans contain prolongations with multiple
child notes. Such prolongations must necessarily be repre-
sented by polygons larger than triangles; in general, a pro-
longation with n children will be represented in an OPC by
a polygon with n+ 2 sides.

We devised a text-based file format that can encode many
of the annotations found in a Schenkerian analysis, includ-
ing any type of prolongation (such as passing tones, neigh-
bor tones, and similar diminutions), voice exchanges, ver-
ticalizations of notes, repeated notes merged in an analy-
sis, and instantiations of the Ursatz (the fundamental back-
ground structure posited by Schenker). The format is easy
for the human to input and easy for the computer to parse.
We also developed an algorithm to convert an analysis in
this encoding into an OPC.

4. EXPLORATION OF ANALYSES AS MOPS

We collected a set of eight excerpts of music along with
Schenkerian analyses of the excerpts. The excerpts and anal-
yses were drawn from Forte and Gilbert’s Introduction to
Schenkerian Analysis [2] and the accompanying instructor’s
manual, and were chosen for their similar characteristics:
they are all from compositions for a keyboard instrument in



a major key, do not modulate within the excerpt, and have a
complete instance of the Ursatz, possibly with an interrup-
tion. The analyses were algorithmically translated to OPCs.
The data set contained 66 measures of music and 617 notes.
Overall, 270 prolongations were translated into 356 poly-
gons in the OPCs. Though small, this corpus represents
the largest known data set of machine-readable Schenkerian
analyses. 1

Because we are interested in prolongational patterns and
each triangle in a MOP specifies the prolongation of an in-
terval by two other intervals, we examined how often certain
types of triangles occurred in the human-produced analyses
represented as OPCs. We defined a triangle by an ordered
triple of the size of the parent interval and the sizes of the
two child intervals. Intervals were denoted by size only, not
quality or direction (e.g., an ascending major third was con-
sidered equivalent to a descending minor third), except in
the case of unisons, where we distinguished between per-
fect and non-perfect unisons. Intervening octaves in inter-
vals were removed (e.g., octaves were reduced to unisons),
and furthermore, if any interval was larger than a fourth, it
was inverted in the triple. These transformations equate pro-
longations that are identical under octave displacement.

Because OPC analyses permit polygons larger than trian-
gles, extra care was required to derive appropriate triangle
frequencies for these larger polygons. As any polygon can
only be triangulated in a fixed number of ways, and each
of those triangulations contains the same number of trian-
gles, for every polygon larger than a triangle we counted the
frequencies of every possible triangle over all possible tri-
angulations of the polygon and weighted the resulting fre-
quencies so that they would sum to the number of triangles
expected in a triangulation.

We tested the triangle frequencies to see if they were sta-
tistically significant given the null hypothesis that the Forte
and Gilbert analyses resemble random analyses (where any
triangulation of a MOP is as likely as any other) in their
triangle frequencies. The expected frequencies under the
null hypothesis are not uniformly distributed, even if all the
notes in a composition are considered distinguishable from
each other. Therefore, for each excerpt in our corpus, we
generated 5,000 analyses of the excerpt uniformly at ran-
dom. Each of these analyses was produced by taking the
corresponding human-created analysis as an OPC and re-
triangulating each MOP inside. We used these random anal-
yses to compute the expected frequencies of every type of
triangle possible and compared them to the observed fre-
quencies from the human-produced analyses. We ran indi-
vidual binomial tests for each type of triangle to determine
if the observed frequency differed significantly from the ex-
pected frequency.

Five types of triangles had differences between their ob-

1 Analyses are available at http://www.cs.umass.edu/∼pkirlin/schenker.

served and expected frequencies that were statistically sig-
nificant at the 5% level; these are shown in Figure 2. A
canonical prolongation for each type of triangle is depicted
at the far left of each row in the figure, though because inter-
vals have had intervening octaves removed and are inverted
if larger than a fourth, each type of triangle represents an
entire class of prolongations. Triangles that contained a per-
fect unison as a child interval are not shown in this table,
as we suspect their frequencies are biased due to the way
merged notes are encoded in an analysis. Consecutive notes
of the same pitch are often implicitly merged in a Schenke-
rian analysis, and these are encoded as prolongations of the
interval from the first note with the repeated pitch to the note
following the last note with the repeated pitch.

We can musically interpret each of the five types of tri-
angles shown in Figure 2 and hypothesize the reasons for
the differences in frequency. The first row in the figure
(p = 0.001) tells us that triangles describing an interval of
a third being elaborated by two seconds are more likely to
appear in a human-produced analysis than in a randomly-
generated analysis. A passing tone filling in the interval
of a third would fall into this category. We suspect such
patterns are numerous due to the theorist’s preference for
identifying stepwise voice leading connections in an analy-
sis. The second row (p = 0.003) shows us the commonality
of a melodic second being elaborated by a third and then a
step in the opposite direction, for instance, when the inter-
val C–D is elaborated as C–E–D. Again, this corresponds to
the frequent situation of a stepwise pattern being decorated
by an intermediate leap. The third row (p = 0.02) shows
the preponderance of melodic fifths (inverted fourths) be-
ing elaborated by consecutive thirds, corresponding to the
arpeggiation of a triad. Harmonies are frequently prolonged
by arpeggiations of this type.

The fourth row in Figure 2 (p = 0.03) shows that trian-
gles corresponding to a melodic second elaborated by a step
and then a leap of a third in the opposite direction occur less
frequently than expected. An example would be the interval
C–D being elaborated by the pattern C–B–D. Interestingly,
this is the reverse case of the second row in the table. We
hypothesize that analysts tend not to locate this type of pro-
longation because the leap of a third could suggest a change
of harmony, and therefore it is more likely that the first note
of the new harmony—the B in the example—would be the
more structural note and not the D as would be implied by
such a prolongation. The last row (p = 0.05) illustrates
another type of prolongation found less often than the ran-
dom analyses would suggest: a melodic fourth being elabo-
rated by a step and a leap in the same direction. Musically,
this type of prolongation could be located infrequently in an
analysis for the same reasons as the prolongation described
in the fourth row.

These statistically significant differences show that there
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Figure 2. Observed and expected frequencies of triangles in the corpus of OPC analyses.

are consistencies in the prolongations that analysts locate
during Schenkerian analysis. Whether those consistencies
are due to the analysis method or the analyst’s own procliv-
ities is irrelevant, as the consistencies can be exploited to
produce an analysis algorithm in either case.

5. PROBABILISTIC INTERPRETATIONS OF MOPS

We now show how to harness the frequencies computed in
the previous section to produce an algorithm capable of hi-
erarchical music analysis. Though we previously defined a
triangle by the intervals between the notes of its vertices,
in this section we will explore triangles defined by the notes
themselves. Defining a triangle in this fashion requires more
data than we currently have to obtain statistical significance,
but we believe using this formulation will lead to better per-
formance in the future.

With a set of triangle frequencies defined by the end-
points of the triangles in a MOP, we may define a number of
different probability distributions using these frequencies. If
we call the left parent note L, the right parent note R, and
the child note C, we define the joint triangle distribution as
P (L,R,C). This distribution tells us the overall probability
of seeing a certain type of triangle in any analysis. We also
define the conditional triangle distribution as P (C | L,R),
which tells us the probability that the interval between the
left parent note and the right parent note will be elaborated
by the child note C.

Using either of these two distributions, we can define the
probability of a Schenkerian analysis in the MOP model.
Given that a MOP is completely defined by its constituent
triangles, we define the probability of a MOP analysis for
a given sequence of notes as the joint probability of all the
triangles that comprise the MOP. If a MOP analysis A for
a given sequence of notes N contains triangles T1, . . . , Tn,
then we state P (A | N) = P (T1, . . . , Tn). However, train-
ing such a joint model directly would require orders of mag-
nitude more data than we suspect could ever be collected.
Instead, as an approximation, we will assume that the pres-
ence of a certain triangle in an analysis is independent of

the presence of all the other triangles. Thus, P (A | N) =
P (T1) · · ·P (Tn).

The question remains whether to use the joint or condi-
tional triangle distributions to define P (Ti). The joint model
better reflects overall frequencies of triangles, but the con-
ditional model easily provides a generative strawman algo-
rithm for producing an analysis: to analyze a sequence of
notes n1, . . . , nk, find argmaxi∈{n2,...,nk−1} P (C = i |
L = n1, R = nk) to find an appropriate child note of n1
and nk, then recursively perform the same operation on the
two resulting child intervals.

The issue of triangle independence remains, regardless of
the specific triangle model chosen. An experiment justifies
our independence assumption. Our goal in the experiment
is to use a random procedure to generate a multiset of anal-
yses for a single piece of music, with the frequencies in the
multiset reflecting the real-world distribution of how ana-
lysts would interpret a piece. The ranking of the analyses by
frequency in the multiset serves as ground-truth. Using this
corpus of generated analyses, we compute triangle frequen-
cies from the corpus as described in Section 4 (though using
triangle endpoints instead of intervals between endpoints)
and obtain a probability estimate for each analysis by using
the independence of triangles assumption. We compare the
ground-truth ranking with a new ranking obtained by sorting
the analyses by the newly-obtained probability estimates.

The exact procedure is as follows. We assumed that every
note in the piece was distinguishable from every other note,
something not feasible for earlier experiments but done here
with the knowledge that humans may use a note’s location
within the piece as a feature of the note to guide the analysis
procedure. Therefore, each piece was a sequence of inte-
gers N = 1, 2, . . . , n. We took a uniform sample of 1,000
MOPs from the space of possible MOPs over N . 2 We ran-
domly chose one MOP to be the “best” analysis, and created
an array A with the 1,000 MOPs sorted in decreasing order
of similarity to the best MOP, where similarity was defined
as the number of triangles in common between two MOPs.

2 The number of MOPs for a sequence of length n is the (n + 2)th
Catalan number [15], which is exponential in n, hence the sampling.



The best MOP was placed at A[0]. We used a variation of
the normal distribution to sample one million MOPs fromA
as follows: each sample was the MOP at position i in the
array, where i was the absolute value of a normal random
variable with µ = 0 and varying σ, rounded down. Values
of i that corresponded to MOPs outside of array A were re-
sampled. The one million sampled MOPs were placed into a
multisetM and sorted by decreasing frequency into an array
R, representing the ground-truth ranking of MOPs.

We then computed the frequency of each triangle in mul-
tiset M , calculated the probabilities for each triangle under
the joint and conditional models, and used the independence
of triangles assumption to compute a probability estimate
for each MOP. We generated a new ranking R′ of the MOPs
from their probability estimates, and computed Spearman’s
ρ and Kendall’s τ ranking correlation coefficients for R ver-
sus R′ using lengths of note sequences between 10 and 50,
and standard deviations σ for the normal distribution vary-
ing between 1 and 20. σ determines the number of analyses
r ranked in R and R′ by the formula r ≈ 4.66σ + 1.65. In
other words, when σ = 1, the random procedure only se-
lects five or six analyses from the 1,000 available in A, but
when σ = 20, approximately 95 are selected.

Figure 3 shows heatmaps for ρ; darker values are closer
to 1, indicating R′ being closer to R. The heatmaps for
τ are similar. For the joint model, mean values of (ρ, τ)
are (0.9630, 0.8848) while for the conditional model they
are (0.9478, 0.8286), indicating that the joint model slightly
outperforms the conditional model.
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Figure 3. The joint model reproduces the ground-truth rank-
ing slightly better than the conditional model.

Assuming independence among the triangles in a MOP
provides us with an algorithm for calculating the most prob-
able MOP, regardless of whether we choose the joint or con-
ditional models for the probability of an individual triangle,
or some other model of triangle probability. Because con-
structing a MOP is equivalent to triangulating a simple con-
vex polygon, we may take advantage of the fact that this
optimal triangulation problem can be solved in O(n3) time
using a Viterbi-like dynamic programming algorithm where
n is the number of notes in the composition. We will refer

to this algorithm as OPT-MOP.

6. EVALUATION

To evaluate OPT-MOP and the suitability of the joint and
conditional triangle models, we performed a leave-one-out
cross-validation test. We generated 1,000 optimal analyses
of the MOPs contained in each of the eight excerpts in our
corpus by using, for each excerpt, triangle probabilities de-
rived only from the ground-truth analyses of the other seven
excerpts. We needed to compute multiple optimal analyses
as occasionally ties appeared among the probabilities; OPT-
MOP broke these ties randomly. Additionally, we generated
1,000 analyses uniformly at random for each excerpt.

To measure the quality of a candidate analysis A, we cal-
culated the number of triangles in A that were compatible
with the corresponding ground-truth analysis. We say a tri-
angle is compatible with the ground-truth if it is present in
the ground-truth (the three specific notes of the excerpt are
triangulated the same way in both analyses), or if there is
nothing in the ground-truth analysis that would prevent such
a triangle from appearing in the ground-truth. The second
provision is required because the ground-truth is human-
produced and may contain prolongations that do not specify
a complete triangulation. Therefore, any triangle that could
result from further triangulation is deemed compatible.

We compared the mean percentage of compatible trian-
gles in the optimal analyses with the corresponding per-
centage for the random analyses. Comparisons were done
separately for the joint and conditional models. Table 4
shows the mean compatibility percentages under both mod-
els, along with a p-value calculated under the null hypoth-
esis that the OPT-MOP does not perform better than ran-
dom. These data indicate that both models perform better
than random as a whole, because if the null hypothesis were
true, we would expect only one of the eight pieces to have
a p-value less than 0.1 for either model. Furthermore, the
joint model outperforms the conditional model on average.

There are a number of possible reasons why the results
are not better. First, the ground-truth analyses are not com-
pletely triangulated, and this puts an upper bound on how
well OPT-MOP can improve over random analyses. As an
extreme example, if a MOP were not triangulated at all, then
all triangles produced by any analysis algorithm would be
compatible with the ground-truth, and therefore both OPT-
MOP’s analyses and the random analyses would both obtain
scores of 100%.

Second, it is not surprising that a training set of only
seven pieces (due to leaving one out) did not appear to cap-
ture all of the statistical regularities of Schenkerian analysis.
Our corpus is the largest available and we are actively en-
gaged in increasing its size. We are gathering analyses from
music journals, textbooks, and Schenker’s own published
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Mozart, Piano Sonata in A major, K. 331, I
Mozart, Piano Sonata in B-flat major, K. 333, III
Mozart, Piano Sonata in C major, K. 545, III
Mozart, 6 Variations on an Allegretto, K. Anh. 137
Schubert, Impromptu in B-flat major, Op. 142, No. 3
Schubert, Impromptu in G-flat major, Op. 90, No. 3
Haydn, Divertimento in B-flat major, Hob. II/46, II
Haydn, Piano Sonata in C major, Hob. XVI/35, I

0 302010 40%

p-value 

Mean percentage of triangles in predicted
analyses compatible with ground-truth analysis Conditional model

Joint model

0.145 0.018
0.009 0.158
0.001 0.137
0.013 0.033
0.192 0.586
0.084 0.175
0.150 0.369
0.019 0.008

Joint CondExcerpt

Figure 4. Leave-one-out cross-validation results for each of the eight excerpts in the corpus.

works. Third, we cannot overlook the possibility that OPT-
MOP cannot produce a good analysis due to the model mak-
ing incorrect assumptions or being too simplistic. Along
with gathering more data, we are also working to improve
our model of the analysis procedure.

7. CONCLUSIONS

Our work shows that actual Schenkerian analyses have sta-
tistical regularities that can be represented, discovered, and
reproduced. We have shown statistically significant regu-
larities in a data set of Schenkerian analyses and illustrated
how those regularities may be exploited to design an algo-
rithm for automatic analysis. Our experiment in ranking
MOPs illustrates that assuming independence among the tri-
angles comprising a MOP results in a satisfactory approxi-
mation to the joint probability of all the triangles. The prob-
abilities of individual triangles in a MOP may be defined in
numerous ways; in the future, we plan on collecting more
contextual information surrounding prolongations, such as
metrical positioning and harmonic information, and using
these features to derive better probabilities over triangles.
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