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While criteria for Schenkerian analysis have been much discussed, such discussions have generally not
been informed by data. Kirlin [Kirlin, Phillip B., 2014 “A Probabilistic Model of Hierarchical Music
Analysis.” Ph.D. thesis, University of Massachusetts Amherst] has begun to fill this vacuum with a
corpus of textbook Schenkerian analyses encoded using data structures suggested by Yust [Yust, Jason,
2006 “Formal Models of Prolongation.” Ph.D. thesis, University of Washington] and a machine learning
algorithm based on this dataset that can produce analyses with a reasonable degree of accuracy. In this
work, we examine what musical features (scale degree, harmony, metrical weight) are most significant in
the performance of Kirlin’s algorithm.
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1. Introduction

Schenkerian analysis is widely understood as central to the theory of tonal music. Yet, many of
the most prominent voices in the field emphasize its status as an expert practice rather than as
a theory. Burstein (2011, 116), for instance, argues for preferring a Schenkerian analysis “not
because it demonstrates features that are objectively or intersubjectively present in the passage,
but rather because I believe it encourages a plausible yet stimulating and exciting way of per-
ceiving and performing [the] passage.” Rothstein (1990, 298) explains an approach to Schenker
pedagogy as follows.

Analysis should lead to better hearing, better performing, and better thinking about music, not just to “correct”
answers. [...] I spend lots of class time—as much as possible—debating the merits of alternate readings: not pri-
marily their conformance with the theory, though that is discussed where appropriate, but their relative plausibility
as models of the composition being analyzed.

Schachter (1990) illustrates alternative readings of many works and asserts that a full musical
context is essential to evaluating them. Paring the music down to just aspects of harmony and
voice leading, like “the endless formulas in white notes that disfigure so many harmony texts,”
he claims, leaves the difference between competing interpretations undecidable. In publications
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such deliberation typically occurs at a high level. It rarely addresses the implicit principles used
to deal with many details of the musical surface. As Agawu (2009, 116) says, “the journey
from strict counterpoint to free composition makes an illicit or — better — mysterious leap as it
approaches its destination.”

As with any complex human activity, the techniques of artificial intelligence may greatly
advance our understanding of how Schenkerian analysis is performed and what kinds of implicit
cognitive abilities and priorities support it. The present work builds upon the research of
(Kirlin 2014a; 2015) which models Schenkerian analysis using machine learning techniques.
By probing Kirlin’s algorithm we address a question of deep interest to Schenkerian analysts and
pedagogues: what roles do different aspects of the music play in deliberating between possible
analyses of the same musical passage? Because the activity of Schenkerian analysis involves
such a vast amount of implicit musical knowledge, it is treacherous to litigate this question by
intuition, without the aid of computational models and methods.

This article is organized as follows. The next section, numbered 2, explains the machine learn-
ing algorithm we used, which is essentially that of Kirlin (2014b). Section 3 describes a series
of experiments to test which musical features the algorithm relies upon most heavily to produce
accurate analyses. Section 4 describes the results of that experiment, and Section 5 provides
further exploratory analysis of data produced by the experiment.

2. A machine learning algorithm for Schenkerian analysis

Schenkerian theory is grounded in the idea that a tonal composition is organized as a hierarchical
collection of prolongations, where a prolongation is defined, for our purposes, as an instance
where a motion from one musical event, L, to another non-adjacent event, R, is understood to
control the passage between L and R, and the intermediate events it contains. A prolongation is
represented in Schenkerian notation as a slur or beam.

Consider Figure 1, a descending melodic passage outlining a G major chord. Assuming
this melody takes place over G-major harmony, this passage contains two passing tones (non-
harmonic tones in a melodic line that linearly connect two consonant notes via stepwise motion),
the second note C and the fourth note A. These tones smoothly guide the melody between the
chord tones D, B, and G. In Schenkerian terminology, the C prolongs the motion from the D to
the B, and the A similarly prolongs the motion from the B to the G.

The hierarchical aspect of Schenkerian analysis comes into play when we consider a prolon-
gation that occurs over the entire five-note passage. The slurs from D to B and B to G identify
the C and A as passing tones. Another slur from D to G, which contains the smaller slurs, shows
that the entire motion outlines the tonic triad from D down to G. The placement of slurs may
reflect the relatively higher stability of the endpoints (between chord tones over non-chord tones,
and between more stable members of the triad, root and fifth, over the third), or they may reflect
a way in which the local motions (passing-tone figures) group into the most coherent larger-scale
motion (arpeggiation of a triad).
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Figure 1. A melodic line illustrating prolongations.
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Figure 2. The prolongational hierarchy of a G-major chord with passing tones represented as two equivalent data
structures. (a) A binary tree of melodic intervals. (b) A maximal outerplaner graph, or MOP.
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This hierarchy can be represented visually by the tree in Figure 2(a): this diagram illustrates the
hierarchy of melodic intervals present in the composition and the various prolongations identified
above. An equivalent representation, known as a maximal outerplanar graph, or MOP (Yust
2006, 2009, 2015), is shown in Figure 2(b). Binary trees of intervals and MOPs are duals of each
other in that they represent identical sets of information, though the MOP representation is more
succinct.

From a mathematical perspective, a MOP is a complete triangulation of a polygon. Each tri-
angle in a MOP represents a single melodic prolongation among the three notes of the music
represented by the three endpoints of the triangle. Because MOPs are oriented temporally, with
the notes shown in a MOP always ordered from left to right as they are in the musical score,
we can unambiguously refer to the three endpoints of a triangle in a MOP as the left (L), middle
(M), and right (R) endpoints. Each triangle in a MOP, therefore, represents a prolongation of the
melodic interval from L to R by the intervals from L to M and M to R.

2.1. A probabilistic interpretation of MOPs

Our goal is to develop an algorithm with the ability to predict, given a musical composition,
a “correct” Schenkerian analysis for that composition. We develop this algorithm using the
following probabilistic perspective.

Assume that we are given a sequence of notes N that we wish to analyze, and that all possible
Schenkerian analyses of N can be enumerated as Ay, ...,A,, for some integer m. We desire
the most probable analysis given the notes, which is arg max; P(A; | N). Because a Schenkerian
analysis A; can be represented in MOP form by its collection of triangles, we will denote the set
of triangles comprising analysis A; by T; 1, ..., T;,, for some integer p. We then define P(A; | N)
as the joint probability P(T;,, ..., T;,). In other words, we define the probability of an analysis
being correct for a given sequence of notes as the probability of observing a MOP containing the
specific set of triangles derived from that analysis.

We will use supervised machine learning to estimate this probability from a corpus of Schenke-
rian analyses done by humans, which we interpret as ground truth. Specifically, we use the
SCHENKER41 dataset, the largest known collection of machine-readable Schenkerian analyses
in existence (Kirlin 2014a). This dataset contains 41 common-practice era musical excerpts and
their corresponding Schenkerian analyses. All of the excerpts are either for a solo keyboard
instrument (or arranged for such an instrument) or for voice with keyboard accompaniment. All
are in major keys and do not modulate, though there are some tonicizations. The musical excerpts
are encoded in the symbolic MusicXML format, whereas the corresponding analyses are encoded
in a text-based format that captures the prolongational information in a Schenkerian analysis,
while not assigning any musical interpretation to each prolongation. In other words, the prolon-
gations are not labeled with terms such as “passing tone,” “neighbor tone,” or other descriptors,
but are denoted only by their constituent notes. Each analysis also contains a Roman numeral
harmonic labelling, determined either from the same source as the prolongations themselves, or
from an expert music analyst.
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The analyses in the dataset are derived from four sources: Forte and Gilbert’s Introduction
to Schenkerian Analysis and the accompanying solutions manual (1982a; 1982b) (10 excerpts),
Cadwallader and Gagné’s Analysis of Tonal Music (1998) (4 excerpts), Pankhurst’s Schenker-
GUIDE (2008) (24 excerpts), and teaching materials produced by an expert music analyst (3
excerpts).

Each excerpt in the dataset can be translated into a MOP representing the prolongations
present in the main melody of the excerpt. However, it is difficult to estimate the full joint
probability P(T;1,...,T; ) directly from the resulting collection of MOPs owing to the curse
of dimensionality: the large number of possible combinations of triangles is simply too large
for any reasonably-sized dataset. Instead, we make the simplifying assumption that each trian-
gle in a MOP is independent of all other triangles in a MOP, which implies P(T;;,...,T;,) =
P(T;,) - P(T; ). This assumption reduces the full joint probability to a product of simpler,
lower-dimensional probabilities, which are easier to learn. An experiment verifies that this
assumption largely preserves relative probability scores between two MOPs, which is a sufficient
condition for our purposes to proceed (Kirlin and Jensen 2011).

Finally, we define the probability of an individual triangle appearing in a MOP as the probabil-
ity of a given melodic interval being elaborated by the specific choice of a certain child note. That
is, we define P(T; ;) = P(M;; | L; j,R; j), where L; j, M; ;, and R; ; are the three endpoints (notes)
of triangle 7; ;. In summary, we have defined the most likely analysis A; for a given sequence of
notes N as

argmax P(A; | N) = argmax P(T;,,...,T; )

P
= argmax | [ P(T;)

i =1

4
=argmaxHP(M,-,j |Li,jaRi,j)- (1)
1 ]=1

We now return to the question of using the SCHENKER41 corpus to compute the probability
P(M;; | L;j,R; ), which requires us to define exactly what type of musical information underlies
the variables L; j, M; ;, and R, ;. It is typical to describe these variables by a collection of features:
specific measurable properties of the source music whose values are determined from the notes
of the music corresponding to those variables. We use a set of 18 features that provide basic
melodic, harmonic, metrical, and temporal information about the music; these are described more
specifically in Section 3.

With a set of features in hand, a straightforward approach to determining the probability above
involves counting the frequency of every type of triangle within the corpus, where each type of
triangle is determined from a unique combination of the 18 features. The curse of dimensional-
ity thwarts us again: there are too many possible types of triangle to expect to get a reasonable
frequency count from any reasonably-sized corpus of analyses. Instead, we use random forests
(Breiman 2001), a machine learning ensemble method particularly suited for high-dimensional
feature spaces, to learn the conditional probability P(M;; | L; j, R; ;). Random forests, which
operate by constructing a large collection of decision trees, are typically used for classifica-
tion tasks by outputting the most frequent class (the mode) predicted by the collection of trees.
However, a probability distribution can be obtained instead by counting the frequencies of the
predicted classes and normalizing them (Provost and Domingos 2003).

Our set of 18 features includes a subset of six features that depend on the middle note M, ;. It
is unlikely that a single random forest could sufficiently learn to predict all six features simul-
taneously. Therefore, we factor our conditional probability into the product of six different
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probabilities, each assigned to predict one of the six features of the middle note. If we denote
these six features of the middle note as M through Mg, this factorization becomes (dropping the
i, j subscripts for brevity):

PM | L,R) = P(M,M,,...,Ms | L,R)
=PWM, |LR)-P(My,Ms,...,M¢ | M,,L,R)
=PWM;|LR) -PMy | M,L,R) - P(M3,My, ..., Ms|M,M>,L,R)
=PWM,|LR)-P(My | M,,L,R)---P(Mg | My, ...,Ms,L,R).

In other words, we construct six random forests and use each one to construct a conditional
probability distribution over a single feature of the middle note. Multiplying these distributions
together gives us a distribution over all six features of the middle note, and therefore an estimate
of the probability of seeing any particular triangle in a MOP.

Now that we have an appropriate estimate of this probability P(M;; | L; j, R; j), we can cal-
culate the probability of an entire MOP analysis according to equation (1). Computationally,
it is inefficient to enumerate all possible Schenkerian analyses for a given sequence of notes;
the size of this set grows exponentially with the length of the sequence. Instead, by combining
the probabilistic interpretation of MOPs along with the equivalence between MOPs and binary
trees, we can view each prolongation within a MOP as a production in a probabilistic context-
free grammar. Under this interpretation, it is straightforward to use standard parsing techniques
(Jiménez and Marzal 2000; Jurafsky and Martin 2009) to develop an O(n?) algorithm, known as
ParseMopr-C, that determines the most probable analysis for a given sequence of notes. Addi-
tionally, the grammar formalism allows us to restrict the predicted analyses to those that contain
a valid Urlinie through specific sets of production rules.

PARSEMoP-C accepts as input a sequence of notes to analyze, along with information about
the harmonic context of those notes and what category of Urlinie should be located (e.g.,
5-line or 3-line). The algorithm begins by computing the probabilities of analyses of all three-
note excerpts of the input music. Because a three-note excerpt forms exactly one triangle in a
MOP, these probabilities come directly from the output of the random forests. The most probable
analyses for all four-note excerpts are obtained by combining the pre-computed results for three-
note excerpts. This continues with n-note excerpts being analyzed by combining probabilities of
(n — 1)-note excerpts, until the entire piece is analyzed. The most probable analysis is output as
a MOP, though there is an additional algorithm available that can display the analysis in more
traditional Schenkerian notation.

We can compare the predicted output analyses of PARSEMoP-C against the ground-truth anal-
yses from the SCHENKER41 corpus to determine the performance of the algorithm, which we
measure via edge accuracy, which is the percentage of edges in an algorithmically-produced
MOP that correspond to edges in the ground-truth MOP. Additional details on the probabilis-
tic interpretation of MOPs, PARSEMoP-C, and its evaluation are available in Kirlin and Jensen
(2015) and Kirlin (2014b).

PArRSEMoOP-C is the first completely data-driven Schenkerian analysis algorithm, in that it
learns all the “rules” of Schenkerian analysis, including their forms and where the apply them,
completely from a corpus of data. Very early studies in computional approaches to Schenkerian
analysis encountered difficulties due to the issues inherent in handling the seemingly conflict-
ing guidelines of the analysis process (Kassler 1975, 1987; Frankel, Rosenschein, and Smoliar
1978). Lerdahl and Jackendoff’s A Generative Theory of Tonal Music (1983) presented two dif-
ferent formal systems for music that, like Schenkerian analysis, can be used to view a piece
of music as a hierarchy of musical objects. The authors, however, stated that their formaliza-
tions were not designed to replicate the ideas of Schenkerian analysis, but were rather a new
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investigation in musical cognition. Though Lerdahl and Jackendoff’s systems lack the details
necessary to develop a “computable procedure for determining musical analyses,” a number of
further endeavors attempted to fill in the gaps. The most successful of these is the work done
by Hamanaka et al., which has resulted in a collection of computational systems that attempt to
replicate parts of Lerdahl and Jackendoft’s theories. Their early systems (Hamanaka, Hirata, and
Tojo 2005, 2006, 2007) required user-supplied parameters to identify the optimal music analy-
sis, while later systems (Hamanaka and Tojo 2009; Miura et al. 2009; Kanamori, Hamanaka, and
Hoshino 2014) have focused on using machine learning to automate the search for the appropri-
ate parameters. Numerous other approaches (Mavromatis and Brown 2004; Gilbert and Conklin
2007; Marsden 2005; Marsden and Wiggins 2008; Marsden 2010) have used a context-free gram-
mar formalization similar to the one presented above, but with a hand-created rule set rather than
rules learned directly from the ground-truth analyses.

3. Musical features

To understand how individual musical features might figure into the accuracy of these algorith-
mic analyses, consider the task of analyzing the “music” in Figure 3. This is the intervallic pattern
of the melody of a simple four-measure phrase of real music. There is no information about the
rhythm or harmony of the original music. We do not know what the key is or which note is the
tonic. Registral information is also removed by octave-reducing melodic intervals and inverting
larger leaps. How likely would it be that one could reproduce a textbook analysis of the melody
relying on this intervallic pattern only?

Or what if one were given only the rhythm and meter of a melody, as in Figure 4?7 How
accurately could we expect to predict a Schenkerian analysis of the passage?

In the experiment described below, we train the machine learning algorithm on Schenke-
rian analyses with differing amounts of information about the music, and therefore discover
how important different aspects of the music (melodic, harmonic, metric) are to accurately
reproducing Schenkerian analyses.

The data for Figures 3 and 4 comes from Schubert’s Impromptu Op. 142, No. 2, which is
analyzed by Cadwallader and Gagné (1998) as shown in Figure 5. Their analysis has enough
detail to be translated into the explicit and near-complete MOP shown in Figure 6(a). The MOP is
a simplification, reflecting just the basic melodic hierarchy implied by Cadwallader and Gagné’s
analysis. There are three places where their analysis is ambiguous: in measures 1-3, they show a
double neighbor figure Ab-G-Bb-Ab, where a slur could be added from A to Bb or from G to Ab,
but neither is clearly implied by the analysis. In measures 5-8, they show C-Bb-Ab-C in stemmed
notes. A slur from C to Ab might be inferred but is not actually shown, so it is not included in
the coded analysis. Finally, this example reflects a common problem in that Cadwallader and
Gagné give the status of 3 to two different Cs. A fully explicit analysis would choose between
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Figure 3. A melody with general interval information only.
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Figure 4. The meter and rhythm of a melody.
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Figure 5. Cadwallader and Gagné (1998)’s analysis of Schubert’s Impromptu Op. 142, No. 2.
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Figure 6. (a) An encoded version of the analysis in Figure 5; (b) an analysis of just the intervallic pattern of the
impromptu, as shown in Figure 3, by a computer trained on just the intervallic patterns of textbook analyses; (¢) computer
analysis of the melodic (interval and scale degree) and harmonic information; and (d) a computer analysis of the melodic,
harmonic, and metrical data of the impromptu.

these as the true initiation of the fundamental line. The part of the analysis shown with beams
is the “background” of the analysis; the PARSEMoP-C algorithm is constrained to find such a
1-2-3 initial ascent as the background of the phrase (but not to find these notes in any specific
locations).

Figures 6(b)—6(d) show three analyses by the algorithm trained on limited amounts of musical
information, which can be compared to the “ground truth” in Figure 6(a). The first, Figure 6(b),
shows the solution arrived at by the algorithm trained on just the generic melodic intervals of
the corpus of textbook analyses. Since this version of the algorithm has no awareness of keys,
accidentals, harmony, register, or thythm, the music is shown with no key signature, clef, or dura-
tional values, and with octave-reduced generic intervals (as in Figure 3). Note that adjacent notes
are implicitly connected, so a slur between the first two notes would be redundant. The algorithm
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accurately identifies some local passing motions in the music given just this basic generic inter-
vallic information. Evaluated by the proportion of shared slurs between the computer analysis
and the textbook one, however, the computer does not do especially well on this example, mostly
because it buries the C of measure 4 in the middle of a Bb-C-Db passing motion, and thus most
of its slurs cross over a note that is especially prominent in the textbook analysis. This passing
motion, which is perfectly reasonable given only intervallic information, is quite implausible
when we see the metric and harmonic status of the three notes involved. On other examples,
however, the algorithm performs surprisingly well with such minimal musical information, as
we shall see below.

Given a slightly richer musical object, including the scale-degree number of each note (i.e., it
has the reference point of a key), and some harmonic context (Roman numeral without inversion)
the algorithm produces the analysis of Figure 6(c). The new information allows it to avoid certain
blatant errors: for instance, now that it knows that the third note (Bb) occurs over a tonic chord,
not a V, it avoids assigning it a major structural role. However, the algorithm makes another
decision that turns out to be a mistake, shifting the first note of the structure ahead to note 7. It
apparently identifies an arpeggiation of V as a likely introductory approach to the first structural
note, but that turns out to be implausible because of the rhythm. When it has additional metrical
information (specifically, which notes are accented relative to others), the algorithm corrects
this mistake, shifting the structural beginning back to the metrically strong note 2, as shown in
Figure 6(d). This result is then quite similar to Cadwallader and Gagné’s analysis.

This single example shows how different aspects of the music — melodic pattern, harmony,
rhythm — play different roles in determining the plausibility of a Schenkerian analysis. The prin-
cipal goal of the experiment reported here is to answer the broad question of what features of the
music are most essential to accurately reproducing human analyses. To clarify, this experiment
is not designed to select a “best” subset of variables that will be used in future studies; using ran-
dom forests as our learning algorithm already reduces much of the need to find an ideal subset of
variables in order to simplify the model or combat overfitting (Hastie, Tibshirani, and Friedman
2009). The motivations of this study come, instead, primarily from music theory. For instance,
theorists often emphasize the linear aspect of Schenkerian analysis, to distinguish it from other
analytical methods that focus more heavily on chords and root progressions. Without a data-
driven approach, however, it is not really clear how much a Schenkerian analysis really relies
on melodic aspects of the music as opposed to harmonic progressions. Also, Schenker pedagogy
typically de-emphasizes the metrical aspect of music, by illustrating, for instance, how brief and
metrically weak notes may sometimes play central structural roles. Yet, because analysts may
rely upon metrical information unconsciously, in making less prominent analytical decisions,
such arguments may be misleading. Finally, Schenkerian analysis is often tacitly understood to
be a recursive procedure, meaning that the same criteria apply to very local analytical decisions
as those at higher levels, between non-adjacent notes and measure-to-measure across a phrase.
Although the examples in the SCHENKER41 corpus are primarily short — usually just a single
phrase or pair of phrases — we were able to test a limited version of this hypothesis from the
note-to-note to the measure-to-measure level, by including a set of temporal features, showing
that even this limited version of the recursion hypothesis is incorrect.

The main results (reported in Section 4) are the outcomes of two feature selection processes.
The first tests the relative importance of broadly-categorized harmonic, melodic, metric, and
temporal features. The second is an ordering of the more specific set of 18 features according
to how much the performance of the machine learning algorithm depends upon them. This sec-
ond process generated a substantial amount of data that also permitted us to draw some limited
conclusions via exploratory analysis of how features interact. This is reported in Section 5.

The features used in this work were originally specified by Kirlin (2014b) because they cov-
ered a range of types of musical information, melodic, harmonic, rhythmic, and temporal, were
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easily determinable by computer from the dataset, had a small number of possible values for each
feature, and most importantly, seemed likely to fulfill a critical role in the Schenkerian analytical
process. The features also proved well-suited to test the kinds of common assumptions about
Schenkerian analysis described above.

We define 18 features in all that are available to the algorithm in the full model. The following
six of these are features of the middle note.

e SD-M The scale degree of the note (represented as an integer from 1 through 7, qualified as
raised or lowered for altered scale degrees).

e RN-M The harmony present in the music at the time of onset of the center note (repre-
sented as a Roman numeral from I through VII or “cadential six-four”). For applied chords
(tonicizations), labels correspond to the key of the tonicization.

e HC-M The category of harmony present in the music at the time of the center note, represented
as a selection from the set ronic (any I chord), dominant (any V or VII chord), predominant
(11, TI6, or IV), applied dominant, or VI chord. (Our dataset did not have any III chords.)

e CT-M Whether the note is a chord tone in the harmony present at the time (represented as a
selection from the set “basic chord member” (root, third, or fifth), “seventh of the chord,” or
“not in the chord”).

e Met-LMR* The metrical strength of the middle note’s position as compared to the metrical
strength of note L, and to the metrical strength of note R (represented as a selection from the
set “weaker,” “same,” or “stronger”).

e Int-LMR* The melodic intervals from L to M and from M to R, generic (scale-step values)
and octave generalized (ranging from a unison to a seventh).

Two features of the middle note are different than the others, in that they are influenced by the
left and right notes. These are therefore distinguished as “LMR” features, as opposed to simple
“M” features.

We also used the following 12 features for the left and right notes, L and R.

e SD-LR* The scale degree (1-7, qualified as in SD-M) of the notes L and R.

e Int-LR The melodic interval from L to R, with intervening octaves removed.

e IntlI-LR The melodic interval from L to R, with intervening octaves removed and intervals
larger than a fourth inverted.

e IntD-LR The direction of the melodic interval from L to R; i.e., up or down.

e RN-LR* The harmony present in the music at the time of L or R, represented as a Roman
numeral I through VII, or “cadential six-four.”

e HC-LR* The category of harmony present in the music at the time of L or R, represented as a
selection from the set tonic, dominant, predominant, applied dominant, or VI chord.

e CT-LR* Status of L or R as a chord tone in the harmony present at the time (see the description
of CT-M above).

e MetN-LR* A number indicating the beat strength of the metrical position of L or R. The
downbeat of a measure is 0. For duple or quadruple meters, the halfway point of the measure
is 1; for triple meters, beats two and three are 1. This pattern continues with strength levels of
2, 3, and so on.

e MetO-LR* A number indicating the beat strength of the metrical position of L or R. The
downbeat of a measure is 0. For duple or quadruple meters, the halfway point of the measure
is 1; for triple meters, beats two and three are 1. This pattern continues with strength levels of
2, 3, and so on. The difference between MetN-LR and MetO-LR is that the former is repre-
sented in trees of the random forest as a numeric variable, and the latter as an ordinal variable.
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The algorithm that creates the forests treats these types of variables differently: numeric vari-
ables are compared using greater-than or less-than tests, while ordinal variables are treated as
categorical, and are compared using equality tests.

e Levl-LR Whether L, M, and R are consecutive notes in the music, represented as a true/false
value (this can be determined strictly from examining the positions of L and R, and so is not
included in the list of middle-note features).

e Lev2-LR Whether L and R are in the same measure in the music, represented as a true/false
value.

e Lev3-LR Whether L and R are in consecutive measures in the music, represented as a
true/false value.

Note: Features marked with an asterisk (*) in the lists above are, from a machine learning
standpoint, two different features: they are separate and distinct inputs available to the random
forests algorithm; for instance, there is an SD-L feature and an SD-R feature that the learning
algorithm treats independently. However, in the feature selection experiments that follow, these
“paired features” are always treated as an indivisible unit in the set of available features— they
are always added or removed together.

There are many well-established feature selection techniques that could potentially help
determine the relative importance of the features in producing output analyses that match the
ground-truth analyses. Many are inappropriate in our situation, however, because they are
designed specifically for classification tasks, and there is no notion of an output class in our
system. A further complication is that any change in the input features directly affects the output
of the random forests, which is a probability distribution for which we do not have ground-truth
data. Certainly, improving the estimate of the probability distribution will likely improve the
quality of the most-probable music analysis predicted by PARSEMoP-C, but it is unclear to what
degree this is true, as the two algorithms are computationally separate. Therefore, we turned to
two standard subset selection methods along with examining correlations between features.

In the two experiments that follow, we evaluated the quality of a specific subset of features by
running the PARSEMop-C algorithm with leave-one-out cross-validation to compute new MOP
analyses for all the pieces in the SCHENKER41 corpus longer than four measures, then calculated
the overall edge accuracy for all the MOPs combined. For our first experiment, we divided the
features into four broad categories, melodic, harmonic, rhythmic, and temporal, and evaluated
the quality of all exhaustive subsets of these categories of features. In our second experiment,
we used backward selection to cycle through each feature from the training data and in order
to find the feature that, when omitted, decreased the overall accuracy the least. This feature was
then permanently removed and another cycle was performed, until only one feature remained.
For the entire set of 18 features we then had 18 trials, numbered 0—17, where trial O included all
18 features in the full model, and trial 17 (trivially) included only the last remaining feature.

4. Results

4.1. Experiment 1

We first divided the features into four categories as follows.

Melodic: SD-M, SD-LR, Int-LMR, Int-LR, IntI-LR, IntD-LR
Harmonic: RN-M, RN-LR, HC-M, HC-LR, CT-M, CT-LR
Metrical: Met-LMR, MetN-LR, MetO-LR

Temporal: Levl-LR, Lev2-LR, Lev3-LR
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Figure 7. Edge accuracy as determined from different subsets of feature categories. There is no trial for the temporal
features by themselves, as there are no middle-note features in that category, and at least one such feature is required.
The horizontal line at 28% indicates the baseline edge accuracy that could be obtained by an algorithm that operated
randomly.

We ran 14 trials to evaluate the quality of non-zero sized subsets of feature categories, from
all four categories (including all 18 features) down to single categories. Each trial produced
an overall edge accuracy giving us information on the utility of the categories of features, as
detailed in Figure 7. The random forests use the left-right features as “input” and the middle-
note features as “output,” and therefore trials are impossible to run if no middle-note features are
included. Thus, there is no “temporal-only” trial.

Figure 7 shows a baseline edge accuracy of roughly 28%. This number is calculated by
averaging the edge accuracies of all possible MOP analyses of all the musical excerpts in
question. In other words, a hypothetical version of PARSEMor that analyzed music by select-
ing a MOP analysis uniformly at random from all possibilities would average 28% edge
accuracy.

The data from this experiment allow us to test three broad music-theoretic questions described
in Section 3: first, what is the relative importance of melodic and harmonic information? Sec-
ond, is metrical information necessary for producing accurate analyses? Third, does temporal
information influence analyses — that is, is it necessary to use harmonic, melodic, and metri-
cal information differently depending on whether one is making decisions at note-to-note or
measure-to-measure levels? All of these questions essentially presume that each feature set has a
relatively consistent influence over the performance between trials, regardless of the other feature
sets present. Figure 8 therefore shows the change of performance between trials that differed only
in the presence or absence of one feature set, melodic, harmonic, metrical, or temporal. These
appear to reflect relatively normal distributions, so we further assessed the contribution of each
feature set performing paired f-tests comparing data with and without the given feature, and
found the inclusion of harmonic, melodic, and temporal features made a significant difference at
p <.001 and metrical features at p < .0l.
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Figure 8. Change of performance for adding each feature set. Each data point is the difference in performance between
trials that include the feature set listed on the x-axis and trials with those features removed. Averages and standard
deviations are shown for the addition of each group of features. Data points falling outside of a single standard deviation
of the average are labeled with the other feature sets present on the trials compared. For instance, the largest difference
observed is between the trial with Melodic + Metrical features, and the one with Melodic + Metrical + Harmonic
features.

From Experiment 1 we can draw the following conclusions.

e Harmonic features are the most essential to producing an accurate analysis. In particular, they
outweigh melodic features, although these also are very important. This is shown in the large
average influence over performance exhibited by these feature groups in Figure 8.

e Temporal features have a reliably positive influence on performance, around 5% on average
in Figure 8, meaning that the rules of Schenkerian analysis do differ from level to level. In
particular, this influence seems to be present regardless of what other feature sets are present,
so we can infer that harmonic, melodic, and metrical information all need to be used differently
in some way between note-to-note, within-measure, and/or measure-to-measure levels.

e Metrical features also show a reliable influence over performance in Figure 8, although it is
relatively small (around 3-4%).

The extreme values in Figure 8 are also suggestive. All feature sets have well above-average
influence when just the harmonic features are present, which suggests that harmonic features
are most useful in combination with at least one other feature type. At the same time, three of
the unusually low values point to the fact that one trial, Harmonic + Temporal + Metrical, is
substantially lower than what would be predicted by a simple additive model of how the features
interact. In other words, there appears to be an especially sizeable overlap in analytically usable
information for this particular combination of features.

4.2. Experiment 2

The second experiment compared the expendability of the 18 individual features using the back-
ward selection procedure. Figure 9 lists the features dropped on each trial. At certain points in the
process there are larger changes in baseline edge accuracy, most notably on trials 14, 16, and 17.
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Figure 9. Performance of the algorithm on trials 0—17 and the feature removed prior to each trial. (Trial O includes all
features.) N.B. There is no trial 18, but Int-LMR is listed as number 18 to show that it is the last feature remaining in the
model.

This suggests that between these points are more significant differences in feature importance,
and the features can be sorted into groups between these critical points.

As a check on the robustness of the ordering produced by the backward selection we also
averaged, across all trials including the given feature, the decrease in performance observed
after removing that feature. These data are shown in Figure 10. The orderings are consistent
between the groupings indicated on Figure 9, but not within the larger groups A and B.! We also
performed paired #-tests on the data comparing trials that differed only on the inclusion of the
given feature. The results are shown in Figure 10. Note that n decreases as one goes higher on the
list in Figure 9, and is very small for many of the features in group A. Nonetheless, the statistical
tests show reliable influence over performance for all of the features in groups B-F, and even for
some features in group A.

One striking aspect of the result is that, if we sort the features by type — melodic, harmonic,
metrical, and temporal — the five features in groups C-F represent all four types, with a dupli-
cation for melodic features (Int-LMR and SD-M). In addition, the five features in group B also
represent all types, with an additional harmonic feature (CT-M and RN-M). Since the ordering
of groups C-F appears robust, while that within group B is not, we can broadly characterize the
results as follows.

e The result of Experiment 2 is consistent with the finding from Experiment 1 that melodic,
harmonic, metrical, and temporal information all contribute to the analytical process. It also
indicates, further, that the algorithm performs best with a mix of all these feature types.

e It is also consistent with the finding from Experiment 1 that melodic and harmonic features
are the most important (groups D—F), metrical and temporal somewhat less so (group C).

! These two measures are confounded: for the features that remain in the model for longer, there are more trials to
average over, and the drop in performance predictably gets higher as the number of features in the full model gets
smaller. The similarity of the two rankings can therefore be partly featured to this confound, but not entirely so. The
average rise of feature importance from trial to trial is just 0.12%, and this is mostly due to the last four trials. On trials
0-13 the average change is 0.02%.
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Figure 10. Average feature importance and standard deviation for all features over the course of the experiment.
Asterisks show the results of paired #-tests between trials including and excluding the given feature. *** = p < .001,
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e For each of the feature types, except melodic, the majority of the necessary information is
captured by a single feature. Yet, in all cases, some additional valuable information is provided
by one or two other features (group B). In the case of melodic features, these can be subdivided
into purely intervallic information (Int-LMR) and tonally anchored information (SD-M).

While the results of the two experiments are largely consistent, they give divergent indica-
tions on the relative significance of melodic and harmonic features. Experiment 1 indicated that
harmonic features make a larger contribution to the analytical process than melodic ones, while
in experiment 2, the highest-ranking features are melodic ones (Int-LMR and SD-M). Together,
these two results indicate that the important melodic information is consolidated in these two spe-
cific features, which provide a melodic pattern (Int-LMR) and orient it to a tonal center (SD-M),
whereas harmonic information is distributed among several different kinds of features: distinct
RN/HC versus CT features, the former dividing up between M and LR types.

Other than SD-M and Int-LMR, the only other notable melodic feature is SD-LR (group B).
For the most part, the scale degree of the left and right notes is predictable from the scale degree
of the middle note and the intervals to and from the middle note. While SD-LR provides an addi-
tional distinction between chromatically altered scale degrees and diatonic ones, the significance
of this feature probably is more due to the potential use of melodic information as an LR feature
—1i.e. on the left-hand side of the conditional probabilities. This is further discussed in Section 5.

Three of the harmony features drop out in group A. The HC-M and RN-M features, and HC-
LR and RN-LR, are highly redundant (see Section 4.4 below), so it is unsurprising that one of
each of these drops out in group A. The early exclusion of the CT-LR feature is also unsurprising,
because non-chord-tones should be rare as LR features in the corpus. The other three harmony
features all seem to be important: HC-LR, CT-M, and RN-M. HC-LR is the last LR feature
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(group D), and from trial 11 onward the only other LR features are temporal ones. This indicates
that harmony provides the most useful context for predicting features of the middle note. CT-
M is also a feature that would be expected to be important, especially at the note-to-note level,
since non-chord-tones are usually afforded a low structural status. Some additional data analysis
reported in Section 5 suggests that on trial 13, after the removal of CT-M, a group of other
features (SD-M, HC-LR, Int-LMR, and MetN-LR) combine to predict the chord-tone status of
the middle note effectively.

As in Experiment 1, the metrical and temporal features played a lesser but nonetheless signif-
icant role. Of the temporal features, both Lev1-LR and Lev2-LR were valuable, showing that it
is mainly the note-to-note, within-measure, and between-measure levels that behave differently.
The difference between consecutive measures and non-consecutive measures (indexed by Lev3-
LR) was less useful. However, this may simply reflect the fact that the musical examples were
relatively short, and important decisions at these higher levels were constrained by the given
fundamental line.

Between the metrical features, it is unsurprising that Met-LMR is especially useful, since it
incorporates relative information about the left and right notes as they relate to the middle note.
However, MetN-LR, which provides absolute information about the metrical context, is also of
some value.

4.3. Experiment 3

To complement the information about the relative expendability of features provided by the back-
ward selection process in Experiment 2, we also performed a more limited forward selection
process to assess the independent usefulness of smaller sets of features. Because M features
require LR features, and vice versa, we paired all similar M and LR features, and also included
the LMR features by themselves. The results are shown in Figure 11.

These results corroborated the usefulness of harmony, observed in Experiment 1 but less evi-
dent in Experiment 2. Melodic features alone give lower accuracy than either harmonic (not
including CT) or metrical. This suggests that the high analytical value of melodic information is
dependent upon some baseline harmonic and metrical information (in the form of HC-LR and
Met-LMR), while harmony and meter are somewhat more independent. The especially low per-
formance of the CT features can be attributed to the uselessness of CT-LR (given that the great
majority of triangles in the corpus will have chord tones on the left and right), also observed in
Experiment 2.

CT-M +CT-LR

HC-M + HC-LR

RN-M + RN-LR

SD-M + SD-LR

Int-LMR

Met-LMR

0.2 0.25 0.3 035 0.4 0.45 0.5 0.55
Edge Accuracy

Figure 11. The edge accuracy of four models containing only a single LMR feature, or a single M and LR feature.
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Figure 12. Cramer’s V for five musical features (SD = scale degree, HC = harmony class, RN = Roman numeral,
CT = chord tone status, and MS = metric strength). The numerical values are given below the diagonal and also
visually illustrated by the relative darkness of squares in the grid. *** = p < .001.

4.4. Correlations among features

To aid in understanding how features may be interacting in the two main experiments, we also
calculated correlations between features that existed in the musical excerpts themselves, with-
out regard to the analyses (Figure 12). Having two features highly correlated with one another
included in the model can be expected to reduce the overall influence of both features. Thus,
knowing which features are correlated in the music can help to separate the influence of these
correlations from redundancies that are specific to the analytical process.

The five features included are all those that can apply to a single note: distinctions having to do
with relationships between notes are not included. There is one melodic feature (scale degree),
three harmonic features (harmonic class, Roman numeral, and chord tone), and one metrical
feature (metric strength). A number of correlations are significant at p < .001 (and no others were
significant even at p < .05). Metric strength has no significant correlations except for a small one
with harmony class. On the other hand, melodic information is strongly correlated with all of the
harmonic features. This is unsurprising for RN and HC, but the high value for CT is more so.
This high correlation is due primarily to the strong tendency of the “7th of chord” category to be
represented by 4. Among the harmonic features, the very high correlation between HC and RN
is unsurprising. These features differ mainly on the treatment of applied chords, which are rare,
and otherwise on the greater specificity of the RN feature. CT is not significantly correlated with
the other two harmonic features.

5. Interactions between features

The results in the previous section give a general picture of what kind of musical information is
most important in producing a Schenkerian analysis. However, we also found that the importance
of a given feature may be dependent upon what other features are present in the model. In some
cases, the reasons for this are obvious. For instance, we found in Section 4.4 that scale degree and
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harmony class are strongly correlated in the music. Therefore, the presence of, e.g., SD-M should
reduce the importance of HC-M (and SD-LR should reduce the importance of HC-LR, etc.).
Where this reflects features of the music, it has nothing to do with Schenkerian analytical practice
per se. However, similar kinds of redundancies might derive from the nature of the analytical
process as well. And we also find that certain features increase in importance when another
feature is included, which reflects an interdependence of features in the analytical process.

The backward selection process, because it required removing every remaining feature on
every trial, produced data that made it possible to address this question of how features interact.
The nature of this data analysis is necessarily exploratory. Consider, for instance, Figure 13,
which tracks the effect of removing the scale degree feature over the course of Experiment 2.
Were the relationship of this to other features equivocal, we might expect the values to stay
roughly the same or to increase steadily from one trial to the next. The chart for SD-M is much
more jagged, suggesting that it has non-trivial relationships with other features. For instance,
when SD-LR is removed, SD-M suddenly spikes in importance. This suggests that the preceding
low value probably reflected not a lack of significance for scale degree information in general,
but that there is considerable overlap between the two scale degree features, making one of them
— but not both — expendable. This makes sense, because given that the algorithm has intervallic
information about the melody (in the form of Int-LMR), either scale degree feature can anchor
that intervallic information to a tonal center.

The potentially most meaningful data in these graphs are the places like this where there
are large changes in the importance of some feature from one trial to the next. We can infer
that these large changes result from some kind of interaction between the feature in question
and the one removed from one trial to the next. These may be of the form of redundancies or
interdependencies. Such redundancies or interdependencies might involve more than one feature.
For example, if one knows the scale degree of the middle note (SD-M) then one can infer the
scale degree of the left and right notes (SD-LR) by knowing the intervals between the middle
and the left and right notes (Int-LMR). Therefore, these three features are redundant as a group,
but no pair of them is redundant.

SD-M
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Figure 13. The effect of removing the SD-M feature on trials 0—16. The labels on the horizontal axis show the feature
removed prior to the given trial. For instance, the peak at the trial for SD-LR means that the effect of removing SD-M
changed to about 8% after the removal of SD-LR.
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This redundancy is reflected by spikes in the importance of SD-M in Figure 13. The drops
in importance reflect interdependencies between features. The largest drop in Figure 13 occurs
when MetN-LR is removed. This indicates that SD-M is more useful when MetN-LR is included
in the model. MetN-LR provides absolute metric orientation to complement the relative infor-
mation of Met-LMR, so we can deduce that the likelihood of a given scale degree in the middle
position changes depending on the metric context. We also see fairly large drops in the impor-
tance of SD-M for the temporal features LevI-LR and Lev2-LR, which similarly indicates that
the likelihood of certain scale-degree progressions depends on temporal context.

To search the data systematically for the most prominent such interactions between parameters,
we tallied every change of feature importance from one trial to the next and ordered them from
largest to smallest in distance from the mean (where “feature importance” is the reduction of
triangle accuracy that results from removing the given feature on the given trial). The mean
change is 0.12%, indicating a tendency for feature importance to increase modestly on average
as the model gets smaller. Table 1 includes all cases where the change is further than one standard
deviation (2.35%) from this mean.

We will not address every entry in this list. The sections below will instead discuss some of
the more notable interactions shown.

5.1. Removal of CT-M

The largest two changes, and four of the largest 20, occurred between trials 12 and 13 after
the removal of the CT-M feature. All of these are increases in sensitivity, which indicate
redundancies. These redundancies apparently involve a large group of parameters. Most non-
chord-tones will occur when the left and right notes are of the same harmonic class and the
middle note has a conflicting scale degree. Therefore, the combination of HC-LR and SD-M can
substitute for CT-M in many instances, making for a three-way redundancy. This is indicated in
the first two entries of Table 1.

Other kinds of non-chord-tones that occur over changes of harmony, such as accented disso-
nances and passing tones preceding a chord change, can be predicted with the help of metrical
information and interval patterns associated with these types of dissonance figures. This explains
the entries 11 and 13 on Table 1, which indicate a larger five-way redundancy between CT-M,
SD-M, HC-LR, Int-LMR, and Met-LMR.

These observations help us interpret the ordering of features arrived at in the experiment.
The importance of chord-tone status is reflected not only in the value of CT-M in the results
of Experiment 2, but also in the large increases in sensitivity of the four features in Table 1.
Therefore we may conclude that chord-tone status, as might be expected, plays a large role in the
analytical process for these kinds of short excerpts.

5.2. Removal of temporal features

Trial 14, where the Lev1-LR feature is removed, is also prominent in Table 1. All of the large
changes on this trial reflect interdependencies: entries 4 (Met-LMR), 6 (HC-LR), 16 (Int-LMR),
and 21 (SD-M). These are all the features remaining in the model at trial 14. This result indicates
that each of these basic metrical, harmonic, and melodic features operate differently at the local,
note-to-note level than at higher levels. In other words, this is strong evidence that the rules of
note-to-note analysis differ in systematic ways from higher-level analytical reasoning. For the
harmonic and metrical features, this is readily understandable — a change of harmony at the note-
to-note level is likely to represent a direct harmonic progression, and direct metrical relations,
similarly, have a more specific meaning than indirect ones. However, the inclusion of melodic
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Table 1. Changes of feature importance from one trial to the next greater than one standard deviation from the mean
of 0.12% (less than —2.23% or greater than 2.47%).

Feature Edge Difference Change from
No. Feature Trial removed accuracy from full previous trial
1 SD-M 13 CT-M 52.61 13.38 12.36
2 HC-LR 13 CT-M 52.74 13.25 777
3 SD-M 10 SD-LR 60.00 8.15 7.39
4 Met-LMR 14 Levl-LR 60.00 0.51 —5.99
5 CT-M 10 SD-LR 67.52 0.64 —5.86
6 HC-LR 14 Levl-LR 52.99 7.52 —5.73
7 Int-LMR 10 SD-LR 59.36 8.79 5.73
8 Int-LMR 15 Met-LMR 45.73 14.27 5.22
9 MetN-LR 10 SD-LR 68.28 —0.13 —4.71
10 SD-M 11 MetN-LR 64.84 3.44 —4.71
11 Int-LMR 13 CT-M 53.50 12.48 4.59
12 Int-LMR 12 Lev2-LR 58.85 7.90 —4.08
13 Met-LMR 13 CT-M 59.49 6.50 4.20
14 Int-LMR 8 RN-LR 66.62 3.95 —3.69
15 Met-LMR 11 MetN-LR 64.20 4.08 3.82
16 Int-LMR 14 Levl-LR 51.46 9.04 —3.44
17 Int-LMR 5 IntD-LR 65.35 7.64 3.44
18 SD-M 16 HC-LR 46.62 5.35 —3.06
19 Met-LMR 10 SD-LR 67.90 0.25 —3.06
20 Int-LMR 11 MetN-LR 56.31 11.97 3.18
21 SD-M 14 Levl-LR 50.06 10.45 —293
22 RN-LR 4 HC-M 72.36 0.76 —2.68
23 SD-LR 9 RN-M 68.15 0.51 —2.68
24 RN-LR 3 CT-LR 69.43 3.44 2.68
25 HC-LR 10 SD-LR 63.31 4.84 2.68
26 RN-M 8 RN-LR 68.66 1.91 —242
27 SD-M 12 Lev2-LR 65.73 1.02 —242

features also shows that we should expect different melodic shapes at slightly higher levels than
at the note-to-note level.

The latter point may also be made about Lev2-LR, the distinction between within-measure and
between-measure levels. The melodic features are also dependent on this feature as indicated in
entries 12 (Int-LMR) and 27 (SD-M).

5.3. Importance of Int-LMR

The Int-LMR feature occurs frequently in Table 1. This data is perhaps most readily assessed by
considering the overall trajectory of Int-LMR’s feature importance, as shown in Figure 14. There
is a general upward trajectory indicating that, as features are removed, Int-LMR compensates for
many of them, especially melodic and metrical features. This trend is interrupted by three promi-
nent dips. The first corresponds to the removal of two harmonic features, suggesting that the
likelihood of certain interval patterns depends upon harmonic context (e.g. a change of harmony
versus a stable harmony). The other two dips are for the temporal features just discussed.

5.4. Interactions involving SD-LR

As previously noted, the SD-LR feature is redundant with the combination of SD-M and Int-
LMR, in the sense that the two middle features may be used to predict SD-LR, with the only
exception being distinctions between chromatic and diatonic values. It is therefore unsurprising
that two of the strongest interactions involve redundancies between these three features (entries
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Figure 14. Changes in Int-LMR’s feature importance through the trials. The labels on the horizontal axis show the
feature removed prior to the given trial.

3 and 7 in Table 1). However, SD-LR also shows some prominent interdependencies indicated
by negative shifts in entries 5 (CT-M), 9 (MetN-LR), and 19 (Met-LMR). These reflect the role
of SD-LR as the only LR melodic feature remaining in the model beyond trial 6, which allows
melodic considerations to appear on the left side of the conditional probability, as predictors. The
results show that the use of melodic information to reliably predict features of the middle note
is largely dependent upon complete harmonic (CT-M) and metrical (MetN-LR and Met-LMR)
information.

6. Conclusions

e Melodic, harmonic, and metrical features are all significant considerations in Schenkerian
analysis.

e As a whole, harmonic information is the most essential for making an accurate analysis.

e However, harmonic information breaks down into two separately important components. First,
harmonic context is the most useful conditional feature for predicting characteristic patterns of
all features. Second, identification of non-chord-tones is a significant aspect of the analytical
process.

e Melodic information — scale-degree progression and intervallic pattern — is also crucial and
actually becomes the most important analytical factor when harmonic features are divided up
between harmonic context and chord tone status.

e Metrical information is the least important overall, but nonetheless does play an essential role.

e The rules of Schenkerian analysis vary from level to level. In particular, there is strong
evidence that the note-to-note level follows substantially different rules than larger-scale lev-
els. This is especially true of how melodic patterns work in Schenkerian analysis, which
varies not only at the note-to-note level, but also between within-measure and across-measure
levels.
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