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ABSTRACT

We explore the extent to which rhythmic features alone,
specifically binary note-onset patterns and the Longuet-
Higgins and Lee (LHL) syncopation metric, can predict
both musical phrase boundaries and composer identity in
ragtime music. Using a novel dataset of 71 hand-labeled
symbolic scores by Scott Joplin, James Scott, and Joseph
Lamb, we present statistical analyses revealing that rhyth-
mic and syncopation patterns differ significantly across com-
posers and metrical positions within a 16-measure strain.
We evaluate how effectively these rhythmic patterns pre-
dict ragtime phrase boundaries by training and comparing
multiple machine learning models, including logistic re-
gression, support vector machines, and neural network ar-
chitectures such as convolutional neural networks, bidirec-
tional long short-term memory networks, and transform-
ers. An ablation study confirms that the LHL syncopation
measure significantly improves predictive performance. We
further demonstrate that these same rhythmic features can
be used to classify composer identity either from an entire
piece or from a 16-measure strain, and discuss the musico-
logical interpretations of these findings. These results pro-
vide clear evidence that the rhythmic aspect of musical no-
tation alone can model structural and stylistic differences
in compositions.

1. INTRODUCTION

Understanding musical structure is a central challenge in
computational musicology. While prior work has approached
this problem from melodic, harmonic, and rhythmic per-
spectives, most systems aim to leverage whichever features
are most predictive, regardless of their musical origin. Yet
in certain genres, such as ragtime, rhythmic style is not
merely a contributing factor, but a defining element of the
genre.

Ragtime is characterized by its distinctive rhythmic fea-
tures, particularly its syncopated or “ragged” rhythms. Dur-
ing ragtime’s heyday in the late 1890s and early 1900s, the
stylistic convention emerged of structuring such composi-
tions into 16-measure phrases or strains; composers such
as Scott Joplin, James Scott, and Joseph Lamb best ex-
emplified this convention [1, 2]. This standardized phrase
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structure, combined with the characteristic syncopated rhyth-
mic complexity, provides an ideal context for investigating
how rhythmic features might encode both structural and
composer-specific stylistic information.

In particular, we ask to what extent the structure of rag-
time music can be understood and predicted using the rhyth-
mic aspect of notation alone. While a number of recent
studies have attempted to quantify the way syncopation —
a purely rhythmic phenomenon — is used in ragtime com-
positions, previous research has not systematically investi-
gated syncopation’s potential to predict structural elements
such as phrase boundaries or composer identity. Under-
standing how rhythmic and syncopation patterns encode
such information provides potential insights into cognitive
processing of rhythm and can inform other areas of com-
putational musicology.

In this paper, we directly investigate the relationship be-
tween syncopation and the development of musical phrases
and strains in a ragtime composition. We then extend the
investigation to study if different ragtime composers uti-
lized syncopation differently within musical phrases. We
show that we can use syncopation along with note onset
patterns — no other melodic or harmonic information —
to reliably predict both phrase boundaries and composer
identity in symbolic ragtime scores. This is made possible
by a newly-released symbolic dataset of 71 ragtime piano
compositions, annotated with composer labels and hand-
labeled 16-measure segment boundaries.

Our contributions are as follows. We publicly release a
new dataset of ragtime music annotated with 16-measure
phrase boundaries and composer labels. We present a de-
tailed analysis of how syncopation, measured using the
Longuet-Higgins and Lee (LHL) metric [3], varies within
and across pieces, composers, and phrase locations. Our
statistical results confirm that composers use syncopation
in measurably distinct ways within phrases. We use ma-
chine learning models to predict the location of segment
boundaries using rhythmic onset patterns and syncopation
values alone. We show that these same rhythmic features
can reliably predict composer identity, both at the segment
level and the full-piece level, and we provide a musico-
logical interpretation of these findings. Lastly, we confirm
the impact of the syncopation factor with an ablation study.
The dataset and code for all of the experiments described
here is publicly available. 1

1 https://github.com/pkirlin/ragtime-tenor-2025
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mic complexity, provides an ideal context for investigating
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composer-specific stylistic information.
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time music can be understood and predicted using the rhyth-
mic aspect of notation alone. While a number of recent
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gated syncopation’s potential to predict structural elements
such as phrase boundaries or composer identity. Under-
standing how rhythmic and syncopation patterns encode
such information provides potential insights into cognitive
processing of rhythm and can inform other areas of com-
putational musicology.

In this paper, we directly investigate the relationship be-
tween syncopation and the development of musical phrases
and strains in a ragtime composition. We then extend the
investigation to study if different ragtime composers uti-
lized syncopation differently within musical phrases. We
show that we can use syncopation along with note onset
patterns — no other melodic or harmonic information —
to reliably predict both phrase boundaries and composer
identity in symbolic ragtime scores. This is made possible
by a newly-released symbolic dataset of 71 ragtime piano
compositions, annotated with composer labels and hand-
labeled 16-measure segment boundaries.

Our contributions are as follows. We publicly release a
new dataset of ragtime music annotated with 16-measure
phrase boundaries and composer labels. We present a de-
tailed analysis of how syncopation, measured using the
Longuet-Higgins and Lee (LHL) metric [3], varies within
and across pieces, composers, and phrase locations. Our
statistical results confirm that composers use syncopation
in measurably distinct ways within phrases. We use ma-
chine learning models to predict the location of segment
boundaries using rhythmic onset patterns and syncopation
values alone. We show that these same rhythmic features
can reliably predict composer identity, both at the segment
level and the full-piece level, and we provide a musico-
logical interpretation of these findings. Lastly, we confirm
the impact of the syncopation factor with an ablation study.
The dataset and code for all of the experiments described
here is publicly available. 1

1 https://github.com/pkirlin/ragtime-tenor-2025

2. RAGTIME, SYNCOPATION, AND MUSICAL
PHRASES

Syncopation in music occurs when a listener, expecting to
hear the musical onset of a note on a strong beat, instead
finds that onset shifted to a weak beat, subverting their ex-
pectations [4, 5]. While syncopation is found in many mu-
sical genres, it is particularly identified with ragtime [2].
Because of this close association, it is natural to study how
the use of syncopated patterns varies in the genre. Music
historians have noted that the particular varieties of synco-
pated patterns have varied in usage over time [1, 6, 7], and
computational studies have confirmed this [8, 9, 10, 11].
Syncopation can be measured through various metrics, in-
cluding the Longuet-Higgins and Lee (LHL) metric [3],
various schemes utilizing inner metric analysis [12, 13] or
the Sioros-Guedes metric [14]. We rely on the LHL met-
ric here because it closely aligns with human perception
[15] and has been used in other corpus studies of ragtime
[10, 9]. We describe the calculation of this metric in the
following section.

A prototypical ragtime composition has a set musical struc-
ture consisting of three or four sections of music known
as strains, each of which is sixteen measures long. Each
strain is typically denoted by a letter of the alphabet, “A,”
“B,” etc. Strains are often repeated and reprised. Each
strain is usually divided into four phrases of four measures
each, occasionally with the third phrase a repetition of the
first. While the majority of a composition consists of these
strains, frequently there will be other musical phrases in-
cluded that are not a part of any strain, such as an introduc-
tion, short interludes, or a coda.

3. CREATION AND ANALYSIS OF THE DATASET

There are many datasets of ragtime music available [8],
but no symbolic ones with strain boundaries clearly iden-
tified. Therefore, we set out to create a dataset of “clas-
sic rags,” a term which refers to a ragtime piano compo-
sition written in the style of Scott Joplin (1867 or 1868–
1917) that usually follows a prescribed musical form [16].
These compositions are written in duple meter (usually 2/4
time, though some in 4/4 time) and with well-defined 16-
measure strains. “Classic rags” specifically exclude rag-
time dances, waltzes, or marches. The largest set of classic
rags was written by the “big three” ragtime composers of
Joplin, James Scott (1885–1938) and Joseph Lamb (1887–
1960), who stand out as best exemplifying the ragtime genre
[2].

Creating the Dataset. We created this dataset by ex-
amining the works of Joplin, Scott, and Lamb, and select-
ing all the compositions that fit the classic rag format. We
then located symbolic scores in either Humdrum or Mu-
sicXML format, and manually located each 16-measure
musical strain of each composition, assigning them the let-
ters “A,” “B,” etc., along with also notating variations of
each strain. We use the term “variation” here to mean any
repetition of the strain that is not identical to the original
occurrence. For every musical phrase not part of a 16-
measure strain, we assigned a label such as “introduction,”

“interlude,” or “coda.”
In the end, we collected 71 compositions by the big three

composers (31 by Joplin, 28 by Scott, and 12 by Lamb).
All were in 2/4 time except for two in 4/4 time (one each by
Joplin and Lamb). These compositions consisted of 10,414
total measures of music. There were a total of 604 16-
measure strains in the corpus, including repeated strains,
totaling 9,664 measures of music. The phrase annotations
were stored in a text file recording the name of the compo-
sition, the composer, the name of the phrase or strain, the
variation number of the phrase or strain, and its length in
number of measures. Every measure of every composition
therefore falls into exactly one phrase or strain, which we
will collectively call segments.

Preprocessing. Classic piano rags feature a syncopated
melody in the right hand paired with a largely non-syncopated
left-hand accompaniment [1]. Because our analysis fo-
cuses exclusively on the rhythmic aspect of music nota-
tion, we began by converting each measure of the right-
hand melody parts of the compositions into a binary on-
set pattern, a standard representation in studies of ragtime
syncopation [8, 10, 9]. A binary onset pattern is a pattern
of ones and zeros where a one represents a note onset and
a zero represents a lack of a note onset at a particular sub-
division of the beat. For pieces in 2/4 time, we computed
these patterns at the 16th-note level of granularity, mean-
ing a measure of four eighth notes would be represented as
“10101010.” For pieces in 4/4 time, we computed these
patterns at the 8th-note level, as it was clear from the nota-
tion in these compositions that the underlying quarter note
pulse in the 4/4 pieces was equivalent to the eighth note
pulse in the 2/4 pieces. This step ensured that every mea-
sure in the entire dataset was represented by a pattern of
eight ones and zeros.

Using these patterns, we computed the LHL syncopation
metric for each measure. This metric is zero for measures
with no syncopation, and increases for each occurrence of
a note onset on a weak beat followed immediately by the
lack of an onset on the following strong beat. Syncopations
crossing longer divisions of the measure increase the met-
ric more. For instance, the pattern 01010101 contains
three instances of a weak beat “1” followed by a strong
beat “0.” The first and last have LHL values of 1, while
the middle instance has a value of 2 because it crosses the
midpoint of the measure. Therefore, this measure has an
overall LHL value of 4. If this measure were followed by
a measure with no note onset on the downbeat, the LHL
value would increase by 3 (to a total of 7) for the additional
syncopation crossing the barline.

As the final step of preprocessing, we calculated the LHL
value from each previously-computed binary onset pattern.
Our final dataset consisted of every measure of music from
the melodies in the corpus, aligned with the correspond-
ing ragtime segment annotations, binary onset pattern, and
LHL value.

Analysis. Previous work has shown that the big three
ragtime composers used more syncopation than their con-
temporaries [9] and that their use of syncopation varied
depending on interactions with the metrical hierarchy [11].
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Figure 1. Average syncopation values during each mea-
sure of a 16-measure strain.

Here, we examine syncopation specifically within 16-measure
strains.

We first analyzed the change in LHL syncopation values
during a 16-measure strain. We isolated only these strains
from our dataset and averaged the LHL values for each
measure across all of the strains. Figure 1 illustrates that
these values are not constant. We can see how syncopa-
tion tends to fall at natural points of rest within the strain,
namely at the end of the strain (measure 16), halfway (mea-
sure 8), and one-quarter and three-quarters of the way through
(measures 4 and 12). This should not be surprising —
these are the concluding points of the natural four-measure
phrases within the strain, where one would expect a release
of tension. The average LHL values at measures 3–4, 7–8,
11–12, and 15–16 clearly show this release.

We ran a one-sided permutation test to examine if the
average LHL value during a strain rises and falls due to
deliberate variations in the use of syncopation or due to
chance. We measured the total variability in the average
LHL values during a strain by calculating the sum of the
squared differences between adjacent measures. To gener-
ate a null distribution, we randomly permuted the measures
within each strain, thereby removing any consistent tempo-
ral structure, recomputed the average LHL values, and cal-
culated the same variability statistic. Repeating this pro-
cedure 10,000 times yielded a distribution against which
we compared the observed test statistic. The resulting p-
value was less than 0.0001, indicating that the observed
LHL contour is highly unlikely to have occurred by chance
and reflects a statistically significant pattern in the use of
syncopation within a strain.

We then analyzed LHL contour over strains grouped by
composer; results are shown in Figure 2. This graph sug-
gests that the big three ragtime composers employed syn-
copation in distinct ways. To test this hypothesis, we con-
ducted three pairwise one-way multivariate analyses of vari-
ance (MANOVA), comparing the mean LHL contours —
treated as 16-dimensional vectors — between each pair of
composers. In each test, the null hypothesis stated that the
two composers had equivalent average syncopation con-
tours. All three comparisons were statistically significant
(p < 0.0001) after applying the Šidák correction, indi-
cating that each composer employed a distinct pattern of
syncopation within strains. These results support the hy-
pothesis that the big three ragtime composers not only used
syncopation with differing intensities, but also with struc-
turally distinct temporal profiles.

Figure 2. Average syncopation values during each mea-
sure of a 16-measure strain, grouped by composer.

Figure 3. Average syncopation values during each mea-
sure of a 4-measure phrase within a strain.

It is also informative to examine syncopation use within
the four-measure phrases of each strain. Figure 3 illus-
trates this by averaging LHL syncopation values across
each four-measure phrase (i.e., measures 1–4, 5–8, 9–12,
and 13–16) allowing for clearer identification of within-
phrase trends. A consistent pattern emerges for Joplin and
Scott: syncopation levels remain relatively stable during
the first three measures of each phrase and then decrease
noticeably in the fourth measure. Lamb, however, departs
from this pattern. His phrases exhibit greater internal vari-
ability in LHL values, and the expected drop in syncopa-
tion at the end of the phrase occurs reliably only in phrases
2 (only slightly) and 4.

Our final analysis of syncopation patterns examines how
syncopation changes across different strain categories. Most
of the 71 compositions in the dataset contain four distinct
strains, though a handful only have three, and a few have
five or six. We examined average LHL value across the 16
measures of A, B, C, and D strains, using only data from
the first variation of each strain. Figure 4 illustrates how
A, B, and C strains tend to have relatively similar con-
tours (the thinner lines) but D strains have a unique con-
tour: these strains tend to alternate between more extreme
high and low values of syncopation than the other strains.
We ran another MANOVA test to examine if the contour of
the D strains differed in a statistically significant way from
the average contours of the A, B, and C strains combined.
To get enough statistical power for the test, we used data
from the first and second variations of each strain, rather
than just the first. This test revealed a statistically signif-
icant difference in contour profiles between D strains and
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trates this by averaging LHL syncopation values across
each four-measure phrase (i.e., measures 1–4, 5–8, 9–12,
and 13–16) allowing for clearer identification of within-
phrase trends. A consistent pattern emerges for Joplin and
Scott: syncopation levels remain relatively stable during
the first three measures of each phrase and then decrease
noticeably in the fourth measure. Lamb, however, departs
from this pattern. His phrases exhibit greater internal vari-
ability in LHL values, and the expected drop in syncopa-
tion at the end of the phrase occurs reliably only in phrases
2 (only slightly) and 4.

Our final analysis of syncopation patterns examines how
syncopation changes across different strain categories. Most
of the 71 compositions in the dataset contain four distinct
strains, though a handful only have three, and a few have
five or six. We examined average LHL value across the 16
measures of A, B, C, and D strains, using only data from
the first variation of each strain. Figure 4 illustrates how
A, B, and C strains tend to have relatively similar con-
tours (the thinner lines) but D strains have a unique con-
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To get enough statistical power for the test, we used data
from the first and second variations of each strain, rather
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Figure 4. Average syncopation values during each mea-
sure of a 16-measure strain, grouped by strain identifier.

the other strains (p < 0.01).

4. PREDICTING PHRASE BOUNDARIES WITH
MACHINE LEARNING MODELS

Having established that the three major ragtime composers
— Joplin, Scott, and Lamb — use syncopation in mea-
surably distinct ways within ragtime strains, we investi-
gate whether these rhythmic differences can be leveraged
to identify the boundaries of those same individual strains.
This task falls under the broader umbrella of phrase bound-
ary detection, a long-standing problem in computational
musicology that has been studied extensively using both
symbolic scores and audio recordings as input. Automated
boundary detection has practical implications for music
informatics, including interactive notation systems, struc-
tural visualization, and digital score analysis.

Previous Work. Approaches in the symbolic music do-
main typically fall into one of two categories: prescriptive
systems usually based on rules derived from music the-
ory, human perception, and cognition; and systems where
rules or models are directly computed from data. Prescrip-
tive systems include those found in Lerdahl and Jackend-
off’s A Generative Theory of Tonal Music [17], Narmour’s
Implication-Realization Model [18, 19], Cambouropoulos’
Local Boundary Detection Model [20], and Temperley’s
Grouper model [21]. These systems attempt to encode
human intuitions about melodic expectation and rhythmic
grouping. While conceptually rich, many of these frame-
works were not originally designed for computational im-
plementation, though subsequent work has formalized parts
of them algorithmically.

On the data-driven side, most techniques for phrase bound-
ary prediction in symbolic data are based on statistical or
machine learning approaches, including data-oriented pars-
ing [22], information-theory-driven learning [23], restricted
Boltzmann machines [24], rule mining approaches [25],
and mathematical optimization [26]. In particular, we build
on the investigations into neural networks for boundary
prediction [27, 28] that examined convolutional neural net-
works (CNNs) and bidirectional long short-term memory
networks (BiLSTMs); we extend this to include transform-
ers and the attention mechanism [29].

Our Approach. We follow the symbolic data-driven para-
digm, but this work differs in a few key areas. First, most

prior work in this area, while acknowledging that much
of phrase-boundary finding is rhythmically driven [25], re-
lies on auxiliary melodic or harmonic information for an
extra boost. In contrast, our goal was to examine what
was possible with the rhythmic aspect of music notation
alone, in particular, the binary onset pattern of each mea-
sure and its LHL syncopation value. Second, we use a
novel dataset, and focus on predicting the start and/or end
of phrase boundaries at the measure level, rather than the
note level. We did this as to better align with perceptions
of ragtime melodies which are tightly coupled to the 16-
measure musical strain. Third, we build on prior machine
learning models but focus on those designed for long-term
dependency modeling, namely bidirectional long short-term
memory networks (BiLSTMs) and transformers. Fourth,
we expressly desired to test if it is easier to predict phrase
boundaries for certain composers than others. To our knowl-
edge, this is the first study to model phrase boundaries in
symbolic ragtime scores using machine learning models
with purely rhythmic features.

Task Formulation. We frame phrase boundary detec-
tion as a sequence labeling task. Each input is a ragtime
composition, divided at the measure level. Each melody
measure is represented by nine features: eight binary for
the eight ones and zeros in the binary onset pattern, and
one integer for the LHL value of the measure. All segment
boundaries — both 16-measure ragtime strains and sepa-
rate phrases not part of any strain — are encoded at the
measure level using a 1 for the starting measure, 2 for the
ending measure, and 0 for all other measures. Our goal
was to develop a machine learning architecture that could
predict the segment boundaries of an entire composition
at once by labeling each measure of a previously-unseen
composition with a 0, 1, or 2. We studied three different
variations of labeling and predicting: using all three labels
(0, 1, and 2), using only starting and continuing labels, and
using only continuing and ending labels.

We evaluated eight machine learning models: two non-
neural models to obtain a baseline level of accuracy, and
six neural network architectures to evaluate the possible
improvements that could be leveraged by models designed
for capturing long-term dependencies in sequences. Our
models are:

• Logistic Regression: The first baseline model.
• SVM: The second baseline model: a support vector ma-

chine with a radial basis function kernel to help capture
non-linear decision boundaries.

• CNN-CRF: A convolutional neural network (CNN) ar-
chitecture followed by a conditional random field (CRF)
layer for sequence labeling. The CNN consists of a sin-
gle 1D convolutional layer with 32 filters, a kernel size
of 3, and ReLU activation, followed by a dropout layer
with a rate of 0.3. The output of the convolution is passed
through a fully connected layer that maps to the label
space, producing per-measure class scores. Finally, a
CRF layer, inspired by [28], is used to model transitions
between measure labels and enforce structural consis-
tency in the predicted sequence. The total number of
parameters is 1930.
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• CNN-3-CRF: An extended version of the previous model
with a deeper architecture consisting of three stacked
convolutional layers, each similar to the single layer in
the previous model: 32 filters, a kernel size of 3, and
ReLU activation. The final output passes through a dropout
layer with a rate of 0.3, followed by a fully connected
layer identical to that in the previous model. This deeper
CNN captures increasingly abstract rhythmic features over
a larger temporal context, with the goal of identifying
more complex segment boundary cues. The total num-
ber of parameters is 7178.

• BiLSTM: A bidirectional LSTM (BiLSTM) model with
two stacked layers, each with 32 hidden units per direc-
tion (yielding 64-dimensional outputs per time step af-
ter concatenation). A dropout layer with a rate of 0.3 is
applied between layers. The LSTM outputs are passed
through two fully connected layers: a linear projection
from 64 to 32 dimensions, followed by a ReLU activa-
tion and dropout, and a final linear layer mapping from
32 to the number of label classes. The BiLSTM archi-
tecture is well-suited to this task because it captures both
past and future context for each time step, making it ef-
fective at detecting temporal patterns such as rhythmic
transitions and segment boundaries that depend on in-
formation across the sequence. The total number of pa-
rameters is 38,242.

• BiLSTM-CRF: A BiLSTM identical to the previous one,
but with a CRF layer applied on top. The total number
of parameters is 38,250.

• Transformer: A transformer model that first projects
each measure of music into a 128-dimensional embed-
ding space using a linear projection layer. A positional
encoding is then added to preserve the order of mea-
sures. The embedded sequence is processed by a stack
of two Transformer encoder layers, each with four at-
tention heads and an embedding size of 128. The out-
put is passed through two fully connected layers: first
from 128 to 128 hidden units with ReLU activation and
dropout with a rate of 0.3, and then from 128 to the num-
ber of output label classes. Unlike the BiLSTM models,
which process sequences sequentially and capture tem-
poral dependencies in order, the transformer attends to
all positions simultaneously, allowing it to model long-
range rhythmic dependencies more efficiently and cap-
ture global patterns in the music. The total number of
parameters is 36,834.

• Transformer-CRF: A transformer identical to the previ-
ous one, but with a CRF layer applied on top. The total
number of parameters is 36,842.

Each model was coded in PyTorch [30] or scikit-learn
[31] and trained using the Adam optimizer with a weight
decay of 0.00005 for L2 regularization, and early stopping.
Hyperparameters (number of CNN filters, BiLSTM and
transformer dimensions) were tuned separately on a fixed
20% subset of the data and held constant during leave-one-
out cross validation. We used a loss function adjusted for
class imbalance as appropriate (cross-entropy or negative
log-likelihood), depending on model. We evaluated each
model under three phrase boundary prediction setups (pre-

dicting start-continue-end, start-continue, and continue-end),
two dataset variations (whole pieces labeled versus only
16-measure strains being labeled), and four composer train-
ing/testing groupings (all composers, only Joplin, only Scott,
and only Lamb). For each of these setups, we ran leave-
one-out cross validation at the composition level, predicted
phrase boundaries for each measure of the tested piece,
and calculated precision, accuracy, and F1 score. For ev-
ery configuration, we also predicted segment boundaries
with the true LHL input ablated (set to zero in the input) to
simulate training each model with only note onsets and no
LHL values.

Results. On average, across all task variations, the mod-
els trained to locate the end of segments (trained on seg-
ments labeled with 0 and 2) had higher average F1 scores
than the models trained to locate segment beginnings (la-
bels 0 and 1) or both (all three labels). This was true for
7 out of 8 models, both dataset variations, and all com-
poser groups. Therefore, to save space, we present results
here only for the end-of-segment labeling task; full results
for the other labeling tasks are available in the online code
repository. Table 1 shows precision, recall, and F1 scores
for all task combinations predicting segment endings; be-
cause this task is trained to label the measures of a com-
position with 0 for a segment continuation and a 2 for an
ending, showing just the results for the ending predictions
is sufficient and makes it easier to compare our results with
other studies; recent studies cite F1 scores ranging from
0.26 to 0.89 [24, 25, 28].

Including the LHL syncopation feature in the inputs im-
proved performance across all model types, training sub-
sets, and composer groups, with an average F1 score in-
crease of 0.02. While modest, this gain is statistically sig-
nificant (p < 0.0001) according to a Wilcoxon signed-rank
test. One likely explanation for this increase is that the
LHL metric is derived directly from the same binary onset
patterns already available to the models, dampening its ef-
fect. In future work, we plan to explore whether LHL val-
ues, especially when calculated over longer contexts than
one measure, interact with specific metrical subsets of bi-
nary onset pattern values in ways that support more accu-
rate boundary detection.

On average, models performed slightly better when trained
on all segment types (i.e., both 16-measure strains and mis-
cellaneous phrases such as introductions and codas), likely
because strain and non-strain boundaries share rhythmic
characteristics, providing a broader distribution of bound-
ary patterns. We isolated results from this setting in Ta-
ble 1 and visualized them in Figure 5 to highlight several
key findings.

First, the neural network models consistently outperformed
the logistic regression and SVM baseline models. While
this may not be surprising given their greater number of
trainable parameters, it is notable because the statistical
patterns described in Section 3 might suggest that this task
is relatively straightforward. In practice, however, identi-
fying phrase boundaries requires more nuanced modeling
than simple classification can provide. The CNN-based
models showed modest gains over the baselines, but the
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0.26 to 0.89 [24, 25, 28].

Including the LHL syncopation feature in the inputs im-
proved performance across all model types, training sub-
sets, and composer groups, with an average F1 score in-
crease of 0.02. While modest, this gain is statistically sig-
nificant (p < 0.0001) according to a Wilcoxon signed-rank
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models showed modest gains over the baselines, but the

All composers Only Joplin Only Scott Only Lamb
Model Training Pre Rec F1 ∆ Pre Rec F1 ∆ Pre Rec F1 ∆ Pre Rec F1 ∆

Logistic Reg All 0.23 0.87 0.36 +0.01 0.19 0.87 0.31 +0.02 0.29 0.89 0.44 -0.01 0.22 0.83 0.35 +0.01
SVM All 0.27 0.91 0.41 +0.00 0.25 0.88 0.38 +0.00 0.37 0.91 0.52 +0.00 0.21 0.80 0.34 +0.00
CNN-CRF All 0.56 0.43 0.49 +0.04 0.50 0.32 0.39 +0.03 0.55 0.56 0.55 +0.11 0.54 0.43 0.48 +0.06
CNN-3-CRF All 0.48 0.55 0.52 +0.02 0.44 0.43 0.43 +0.04 0.53 0.61 0.57 +0.07 0.57 0.53 0.55 +0.00
BiLSTM All 0.56 0.80 0.66 +0.03 0.45 0.57 0.50 +0.01 0.61 0.81 0.70 +0.01 0.51 0.73 0.60 -0.02
BiLSTM-CRF All 0.76 0.70 0.73 +0.05 0.54 0.46 0.50 +0.02 0.81 0.72 0.76 +0.03 0.65 0.58 0.62 +0.04
Transformer All 0.51 0.88 0.65 +0.00 0.54 0.79 0.64 -0.01 0.56 0.86 0.68 +0.00 0.54 0.82 0.65 +0.01
Transf-CRF All 0.72 0.72 0.72 +0.03 0.71 0.69 0.70 +0.02 0.74 0.75 0.75 +0.05 0.62 0.67 0.64 +0.01
Logistic Reg Only 16 0.19 0.85 0.31 +0.01 0.15 0.84 0.26 +0.01 0.24 0.88 0.37 +0.00 0.20 0.84 0.32 +0.01
SVM Only 16 0.22 0.91 0.36 +0.00 0.20 0.87 0.32 +0.00 0.31 0.89 0.46 +0.01 0.20 0.76 0.32 -0.01
CNN-CRF Only 16 0.55 0.36 0.43 +0.05 0.50 0.31 0.39 +0.08 0.50 0.47 0.48 +0.10 0.49 0.35 0.41 +0.03
CNN-3-CRF Only 16 0.44 0.51 0.47 +0.05 0.43 0.43 0.43 +0.05 0.50 0.56 0.53 +0.15 0.47 0.33 0.39 -0.04
BiLSTM Only 16 0.54 0.78 0.64 +0.02 0.45 0.65 0.53 +0.01 0.58 0.77 0.66 +0.03 0.47 0.68 0.55 +0.01
BiLSTM-CRF Only 16 0.75 0.67 0.70 +0.03 0.60 0.52 0.56 +0.09 0.73 0.63 0.68 +0.03 0.67 0.55 0.61 +0.03
Transformer Only 16 0.45 0.88 0.59 -0.01 0.44 0.78 0.56 -0.02 0.48 0.89 0.62 +0.00 0.46 0.75 0.57 +0.01
Transf-CRF Only 16 0.75 0.70 0.73 +0.06 0.69 0.67 0.68 +0.03 0.68 0.71 0.69 +0.05 0.61 0.66 0.63 +0.01

Table 1. Performance on predicting segment boundaries by model, subset of data used (all segments or only 16-measure
strains), and composer. ∆ indicates improvement in F1 score when the LHL syncopation value is included in training.

BiLSTM and transformer models achieved around dou-
ble the F1 scores of the simpler models across most test
conditions. The CNN models likely lag behind because
while they can capture local rhythmic patterns in the mea-
sures well, they lack a mechanism for modeling long-range
dependencies, an essential feature for identifying phrase
structure. These results indicate that the deeper architec-
ture in the 3-layer CNN as compared to the single-layer
CNN helped performance only slightly, even with an al-
most four-fold parameter increase. In contrast, the BiL-
STM and transformer models can more easily model tem-
poral dependencies across larger time spans.

Second, we note that in comparing performance in all
composers grouped together, the CRF and non-CRF ver-
sions of the BiLSTM and transformer models performed
similarly, with the CRF giving a slight boost to the F1
scores, most likely due to the CRF’s capacity to enforce
structured label transitions. This is noteworthy as these
models have similar numbers of trainable parameters.

Third, model performance varies notably by composer.
Even though Joplin and Scott each had roughly the same
numbers of pieces in the corpus (31 versus 28), finding
phrase boundaries in Joplin’s compositions appeared to be
a harder task for six of the eight models; only the transformer-
based classifiers seemed to cope roughly equally well with
the two composers’ phrases. Lamb, with only 12 pieces,
exhibited the greatest relative variability in F1 scores, some-
times being the most difficult of the three composers and
sometimes being almost even with Joplin and Scott. These
differences likely stem from distinct rhythmic styles: as
shown in Figure 3, Joplin’s strains exhibit frequent reduc-
tions in syncopation at the end of each four-measure phrase,
which may lead the model to misinterpret internal bound-
aries as final ones. By contrast, Scott and Lamb tend to re-
serve syncopation drop-offs for the end of full 16-measure
strains, thereby providing clearer predictions for segment

Figure 5. Performance of each model and composer group
in predicting strain endings. Improvement due to including
LHL is shown by the shaded region at the top of applicable
bars.

boundaries. The sparsity of Lamb’s data likely further con-
tributes to inconsistency in model performance.

These findings demonstrate that rhythmic notation alone
encodes sufficient information to identify phrase bound-
aries, even in the absence of pitch or harmonic content.
Additionally, the differences in syncopation and phrase shap-
ing among the composers in the corpus are reflected in
the models’ performance. Further musicological investi-
gations could explore whether this rhythm-based approach
generalizes to other metrically strong musical genres, po-
tentially suggesting insights for both symbolic music rep-
resentation and the analysis of historical compositional style.
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5. PREDICTING COMPOSERS

While the previous section focused on how rhythmic fea-
tures such as syncopation align with phrase structure in
ragtime, we now turn to the question of whether these fea-
tures can also be used to distinguish between individual
composers. In other words, we ask if Joplin, Scott, and
Lamb employ rhythm and syncopation in ways that are
compositionally distinct enough to allow machine learn-
ing models to identify authorship based on notated rhythms
alone.

Previous Work and Task Formulation. Composer at-
tribution has been a longstanding task in music informat-
ics. Traditional approaches often relied on hand-crafted
melodic, harmonic, or rhythmic features, but more recent
deep learning methods have enabled direct classification
from symbolic scores [32, 33, 34]. Our approach straddles
the line: as in the last section, our goal is to see what is pos-
sible using solely a rhythmic view of a score. Therefore,
we use similar machine learning models as in the previous
section, that are provided only binary onset patterns and
syncopation values. We evaluate two task formulations:
(1) strain-level classification, where each 16-measure seg-
ment is independently labeled and predicted, and (2) piece-
level classification, where the entire composition is input
and a single composer label is predicted.

We adapted five of the eight models from the previous
section to work in this new formulation. Specifically, we
used the logistic regression, SVM, 3-layer CNN, BiLSTM,
and transformer models. We removed the CRF layer from
the CNN (and did not use it in the other neural network
models) because it was unsuitable for this task: a condi-
tional random field is specifically used in situations with
multiple labels being predicted to model dependencies be-
tween them; here, there is only one label per prediction
(a single 16-measure strain or composition). For this same
reason, each neural network model also applies pooling af-
ter processing its input. The CNN models use global av-
erage pooling to summarize convolutional activations over
time, the BiLSTM model uses mean pooling over the se-
quence dimension, and the transformer uses mean pooling
across the time dimension. These operations are all math-
ematically identical, though the terminology used by con-
vention is slightly different. As in the previous section,
we incorporated class weights into the cross-entropy loss
function.

For predicting composer from a strain, we used 10-fold
cross validation, and for predicting composer from an en-
tire piece, we used leave-one-out cross-validation. Results
are presented in Table 2, with confusion matrices in Fig-
ure 6. Direct comparison to prior work is difficult due
to differences in dataset composition and input modality;
most notably, our models rely exclusively on rhythmic fea-
tures. However, for reference, a similar three-composer
prediction task in [34] cited per-class accuracies rates be-
tween 0.864 and 0.998 (compare with our recall rates).

Results. Several insights emerge from these experiments.
First, strain-level models generally outperform whole-piece
models across the board. This is likely due to the greater
number of training examples available at the segment level,

Strain-level Piece-level
Model Comp Pre Rec F1 Pre Rec F1

Logistic Reg Joplin 0.78 0.69 0.73 0.73 0.77 0.75
Logistic Reg Scott 0.71 0.77 0.74 0.63 0.61 0.62
Logistic Reg Lamb 0.51 0.56 0.54 0.36 0.33 0.35
SVM Joplin 0.94 0.88 0.90 0.67 0.90 0.77
SVM Scott 0.86 0.94 0.90 0.62 0.64 0.63
SVM Lamb 0.92 0.88 0.90 0.00 0.00 0.00
CNN-3 Joplin 0.80 0.78 0.79 0.67 0.71 0.69
CNN-3 Scott 0.73 0.74 0.73 0.64 0.57 0.60
CNN-3 Lamb 0.50 0.50 0.50 0.23 0.25 0.24
BiLSTM Joplin 0.75 0.80 0.77 0.67 0.65 0.66
BiLSTM Scott 0.72 0.73 0.72 0.63 0.68 0.66
BiLSTM Lamb 0.50 0.39 0.44 0.27 0.25 0.26
Transformer Joplin 0.81 0.83 0.82 0.76 0.84 0.80
Transformer Scott 0.75 0.74 0.74 0.60 0.54 0.57
Transformer Lamb 0.52 0.52 0.52 0.25 0.25 0.25

Table 2. Per-class performance on predicting composers
from individual strains or complete pieces.

Figure 6. Confusion matrices for strain-level and piece-
level classification tasks.
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as well as the models’ effectiveness at detecting short-term
rhythmic patterns. Second, the SVM achieves the high-
est strain-level F1 scores across all composers, suggesting
that simpler models can excel when the prediction context
is constrained. In contrast, the SVM failed to classify any
Lamb compositions correctly in the piece-level task, and
continued to misclassify such compositions even when we
oversampled Lamb scores in the training data. Lamb was
consistently the most difficult composer to classify for each
model, which may reflect both the smaller number of avail-
able pieces (12) and higher within-class variability. At the
piece level, Lamb was frequently misclassified as Scott,
which may stem from the fact that both composers exhibit
higher average syncopation than Joplin.

Third, these two tasks see less improvement by using
neural network models over the baseline models (logistic
regression and SVMs) than in the segment boundary detec-
tion task from the previous section. Here, in the the strain-
level classification task, the three neural network models
show only a slight improvement over logistic regression
and none at all over the dominantly-performing SVM. In
the piece-level classification task, the neural models actu-
ally perform slightly worse, on average, than logistic re-
gression and the SVM. This is somewhat surprising, as one
would expect that these architectures, especially the BiL-
STM and transformer, would do better at capturing higher-
level rhythmic and temporal information in the music; how-
ever, this suggests that in ragtime, composer identity is
primarily expressed through local rhythmic motives rather
than extended structural dependencies.

Several other factors may explain these results. First,
though we saw in Section 3 (Figures 2 and 3) that there
are statistically-significant differences in the way that the
three composers use syncopation, these differences are rel-
atively subtle. Second, the dataset is small, which limits
the potential of higher-capacity models and increases the
risk of overfitting. With these two factors, we might have
reached the limit of how well the discussed machine learn-
ing models can do.

Musicological Analysis. To further interpret these re-
sults through a musicological lens, we examined the weights
that logistic regression achieved on the strain-level com-
poser classification task; these weights are illustrated in
Figure 7 on a per-composer basis. Because the features are
normalized, we can interpret the weights as representing
the contribution of each feature toward predicting a given
composer, relative to the others. Each of the first seven
features corresponds to a binary onset at a specific metric
position in the measure (“Pos0” through “Pos7”); these are
followed by the LHL syncopation value feature and a bias
term. Because each feature corresponds directly to a po-
sition in the notated measure, we obtain a clear mapping
from the computational output back to the original sym-
bolic rhythmic notation.

The weight profiles suggest clear stylistic differences in
rhythm and syncopation usage across composers. We can
make a few observations. As expected from our earlier
statistical analyses (Figures 2 and 3), Scott and Lamb re-
ceive higher weights on the LHL syncopation feature than

Figure 7. Logistic regression weights for each feature for
strain-level composer classification. Positive weights in-
dicate that higher feature values increase the likelihood of
classifying a segment as that composer relative to the other
two composers, while negative weights reduce it.

Joplin, reflecting their greater use of syncopation. More
granular insights can be derived from the individual posi-
tional weights. For instance, while the downbeat of the
measure, position 0, does not show much difference be-
tween the composers, the halfway point, position 4, shows
large differences between Joplin and Scott: Joplin appears
to favor having an onset here much more than Scott does,
suggesting that Scott included more syncopation crossing
the midpoint of the measure (e.g., from position 3 to po-
sition 4), than Joplin did. The opposite situation occurs at
position 6, where an onset here favors Scott but not Joplin,
suggesting Joplin preferred syncopation crossing from po-
sition 5 to 6 more than Scott did. The large negative bias
weight for Lamb reflects his underrepresentation in the cor-
pus.

These weight differences reinforce a musicological in-
terpretation of stylistic rhythm in ragtime: while all three
composers make use of syncopation, the specific rhythmic
patterns and degrees of metric disruption vary in ways that
are detectable and classifiable. Though the precision and
recall scores that logistic regression obtained in this exper-
iment limit the overall power of these musicological inter-
pretations, it is still a useful tool.

These results and their musicological interpretation sug-
gest several avenues for future work. From a modeling per-
spective, hybrid architectures that combine convolutional
layers for local rhythmic motif detection with recurrent or
attention-based layers for long-range structure may better
capture both local and global rhythmic features. Expand-
ing the dataset, particularly with additional Lamb compo-
sitions, could reduce class imbalance and when combined
with an interpretable model, would provide more opportu-
nities for useful musicological findings. Finally, it remains
an open question whether the rhythmic dimension of mu-
sic notation alone is sufficient for composer attribution in
this repertoire, or whether additional melodic or harmonic
information is needed to more fully distinguish composi-
tional style.
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6. CONCLUSION

This paper demonstrates that the rhythmic aspect of music
notation alone, represented by binary onset patterns and
Longuet-Higgins and Lee (LHL) syncopation values, pro-
vides substantial information about both musical structure
and composer identity in ragtime. Using only these sym-
bolic rhythmic representations, we showed that machine
learning models, particularly those like BiLSTMs or trans-
formers that are designed to detect long-term structural de-
pendencies, can reliably identify the boundaries of ragtime
strains. On the composer-classification task, non-neural
models approached or exceeded the performance of neu-
ral networks. In particular, support vector machines per-
formed best in the strain-level task, but were inconsistent in
the piece-level task. Still, the overall performance statistics
indicate that rhythmic notation provides a good amount of
guidance for distinguishing composers, especially those of
Joplin and Scott.

From a musicological perspective, these findings rein-
force that rhythmic patterns encode musical style and struc-
tural information in a way that is both detectable and clas-
sifiable. The interpretable logistic regression weights and
positional feature analysis highlight how differences in phras-
ing and syncopation among Joplin, Scott, and Lamb are
evident directly in their notated rhythmic patterns. This
underscores the value of score-based rhythmic representa-
tions for both computational musicology and the study of
historical musical style.

Future work will explore several directions. Modeling
segment-level syncopation trajectories, rather than per-mea-
sure values, may improve boundary detection and com-
poser attribution. Hybrid neural network architectures that
combine convolutional layers for local rhythmic motifs with
attention-based or recurrent layers for global context could
further improve performance. Expanding the dataset could
enable more robust stylistic modeling and support deeper
musicological insight. Finally, extending this work to eval-
uate the contributions of melodic and harmonic features
alongside rhythmic notation will clarify how different as-
pects of score representation interact in composer attribu-
tion and segment boundary detection.
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