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Adapted from Dan Grossman's PL class,  
U. of Washington 



Very important concept 
•  We know that the body of a function can refer to non-local 

variables  
–  i.e., variables that are not explicitly defined in that function or 

passed in as arguments 
•  So how does a language know where to find values of non-local 

variables? 
Look where the function was defined 

(not where it was called) 

•  There are lots of good reasons for this semantics 
–  Discussed after explaining what the semantics is 

•  For HW, exams, and competent programming, you must “get this”  
•  This concept is called lexical scope (sometimes also called static 

scope) 
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Example 
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define y 4) 
-4- (define z (let ((x 2)) (f (+ x y)))) 

•  Line 2 defines a function that, when called, evaluates body  
(+ x y) in environment where x maps to 1 and y maps to the 
argument 

•  Call on line 4: 
–  Creates a new environment where x maps to 2. 
–  Looks up f to get the function defined on line 2. 
–  Evaluates (+ x y) in the new environment, producing 6 
–  Calls the function, which evaluates the body in the old 

environment, producing 7 



Closures 

How can functions be evaluated in old environments? 
–  The language implementation keeps them around as necessary 

Can define the semantics of functions as follows: 
•  A function value has two parts 

–  The code (obviously) 
–  The environment that was current when the function was defined 

•  This value is called a function closure or just closure.  
•  When a function f is called, f's code is evaluated in the environment 

pointed to by f's environment pointer. 
–  (The environment is first extended with extra bindings for the 

values of f's arguments.) 
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Example 
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•  Line 2 creates a closure and binds f to it: 
–  Code: “take argument y and have body (+ x y)” 
–  Environment: “x maps to 1”  

•  (Plus whatever else has been previously defined, 
including f for recursion) 

-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define y 4) 
-4- (define z (let ((x 2)) (f (+ x y)))) 



What's happening behind the scenes 

•  An environment is stored using frames. 
•  A frame is a table that maps variables to values; a frame also 

may have a single pointer to another frame. 
•  When a variable is asked to be looked up in an "environment," 

the lookup always starts in some frame. 
•  If the variable is not found in that frame, the search continues 

wherever the frame points to (another frame). 
•  If the search ever gets to a frame without a pointer to another 

frame (usually this is the "global" or "top-level" frame), we report 
an error that the variable is undefined. 
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define y 4) 
-4- (define z (let ((x 2)) (f (+ x y)))) 

  global   !
!
!
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define y 4) 
-4- (define z (let ((x 2)) (f (+ x y)))) 

  global    !
  x   1 !
!
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define y 4) 
-4- (define z (let ((x 2)) (f (+ x y)))) 

  global    !
  x   1  
  f    !
!

args: y  
code: (+ x y)!



Rules for frames and environments 

•  Rule 1: 
–  Every function definition (including anonymous function 

definitions) creates a closure where 
•  the code part of the closure points to the function's code 
•  the environment part of the closure points to the frame 

that was current when the function was defined (the 
frame we are currently using to look up variables) 
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  global    !
  x   1  
  f    !
!

args: y  
code: (+ x y)!



Rules for frames and environments 

•  Rule 2: 
–  Every function call creates a new frame consisting of the 

following: 
•  the new frame's table has bindings for all of the function's 

arguments and their corresponding values 
•  the new frame's pointer points to the same environment 

that f's environment pointer points to. 
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define q (f 5))  ; changed this line 

  global    !
  x   1  
  f    !
!

args: y  
code: (+ x y)!
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define q (f 5))  ; changed this line 

  global    !
  x   1  
  f    !
!

args: y  
code: (+ x y)!

    f     !
  y    5  
  !
!
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-1- (define x 1) 
-2- (define (f y) (+ x y)) 
-3- (define q (f 5))  ; changed this line 

  global    !
  x   1  
  f    !
  q   6!

args: y  
code: (+ x y)!

    f     !
  y    5  
  !
!



So what? 

Now you know the rules.  Next steps: 
 
•  (Silly) examples to demonstrate how the rule works for higher-

order functions 

•  Why the other natural rule, dynamic scope, is a bad idea 

•  Powerful idioms with higher-order functions that use this rule 
–  This lecture: Passing functions to functions like filter 
–  Next lecture: Several more idioms 

Spring 2013 15 Programming Languages 



Example: Returning a function 

•  Trust the rules:  
–  Evaluating line 2 binds f to a closure. 
–  Evaluating line 3 binds g to a closure as well. 

•  New frame is created for the call to f. 
–  Evaluating line 4 binds z to a number. 

•  New frame is created for the call to g. 
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
   
      !
    !
     !
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
  x   1  
  f    !
    !
     !

args: y  
code: (lambda (z)...)!
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
  x   1  
  f    !
    !
     !

args: y  
code: (lambda (z)...)!

    f     !
  y    4!
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
  x   1  
  f    !
    !
     !

args: y  
code: (lambda (z)...)!

    f     !
  y    4!

args: z  
code: (+ x y z)!
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
  x   1  
  f    !
  g  !
     !

args: y  
code: (lambda (z)...)!

    f     !
  y    4!

args: z  
code: (+ x y z)!
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1  (define x 1)!
2  (define (f y) (lambda (z) (+ x y z)))!
3  (define g (f 4))!
4  (define z (g 6))!

  global    !
  x   1  
  f    !
  g  !
  z   11!

args: y  
code: (lambda (z)...)!

    f     !
  y    4!

    g     !
  z    6!

args: z  
code: (+ x y z)!



Rules for frames and environments 

•  Rule 2a: 
–  Every evaluation of a "let" expression creates a new frame 

as follows: 
•  the new frame's table has bindings for all of the let 

expressions variables and their corresponding values 
•  the new frame's pointer points to the frame where the let 

expression was defined 
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Example: Passing a function 

•  Trust the rules: 
–  Evaluating line 1 binds f to a closure. 
–  Evaluating line 2 binds x to 4. 
–  Evaluating line 3 binds h to a closure. 
–  Evaluating line 4 binds z to a number. 

•  First, calls f (creates new frame), then evaluates 
"let" (creates a new frame), then calls g (creates a new 
frame). 
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y z))!
4  (define z (f h))!



Spring 2013 26 Programming Languages 

1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
      
      !
    !
     !
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
    !
     !

args: y  
code: (let ((x...!
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
    !
     !

args: y  
code: (let ((x...!

args: y  
code: (+ x y)!
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
  h  !
     !

args: y  
code: (let ((x...!

args: y  
code: (+ x y)!
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
  h  !
     !

args: y  
code: (let ((x...!

    f     !
  g    !

args: y  
code: (+ x y)!
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
  h  !
     !

args: y  
code: (let ((x...!

    f     !
  g    !

args: y  
code: (+ x y)!

    let     !
  x    3!
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1  (define (f g) (let ((x 3)) (g 2)))!
2  (define x 4)!
3  (define (h y) (+ x y))!
4  (define z (f h))!

  global    !
  f    
  x   4 !
  h  !
  z   6!

args: y  
code: (let ((x...!

    f     !
  g    !

    g     !
  y    2!

args: y  
code: (+ x y)!

    let     !
  x    3!



Lexical scoping vs dynamic scoping 

•  The alternative to lexical scoping is called dynamic scoping. 
•  In dynamic scoping, if a function f references a non-local 

variable x, the language will look for x in the function that called 
f. 
–  If it's not found, will look in the function that called the 

function that called f (and so on). 
•  Contrast with lexical scoping, where the language would look for 

x in the scope where f was defined. 
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Why lexical scope? 
1.  Function meaning does not depend on variable names used 
Example: Can change body of a function to use q instead of x  

–  Lexical scope: it can’t matter 
–  Dynamic scope: Depends how result is used 

 
When the anonymous function that f returns is called, in lexical scoping, 
we always know where the values of x, y, and z will be (what frames 
they're in).  With dynamic scoping, x and y will be searched for in the 
functions that called the anonymous function, so who knows where 
they'll be. 
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(define (f y)  
  (let ((x (+ y 1))) 
    (lambda (z) (+ x y z))) 



Why lexical scope? 
1.  Function meaning does not depend on variable names used 
Example: Can remove unused variables 

–  Dynamic scope: But maybe some g uses it (weird) 

–  You would never write this in a lexically-scoped language, 
because the binding of x to 3 is never used. 

•  (No way for g to access this particular binding of x.) 
–  In a dynamically-scoped language, g might refer to a non-local 

variable x, and this binding might be necessary. 
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(define (f g) 
  (let ((x 3)) 
    (g 2))) 



Why lexical scope? 

2.  Easy to reason about functions where they're defined. 
Example: Dynamic scope tries to add a string to a number (b/c in 
the call to (+ x y), x will be "hello") 
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(define x 1) 
(define (f y)  

  (+ x y)) 
(define g  
 (let ((x "hello")) 
  (f 4)) 



Why lexical scope? 

3.  Closures can easily store the data they need 
–  Many more examples and idioms to come 

•  The anonymous function returned by gteq references a non-
local variable x.   

•  In lexical scoping, the closure created for the anonymous 
function will point to gteq's frame so x can be found. 

•  In dynamic scoping, x would not be found at all. 
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(define (gteq x) (lambda (y) (>= y x))) 
(define (no-negs lst) (filter (gteq 0) lst)) 



Does dynamic scope exist? 

•  Lexical scope for variables is definitely the right default 
–  Very common across languages 

•  Dynamic scope is occasionally convenient in some situations 
–  So some languages (e.g., Racket) have special ways to do it 
–  But most don’t bother 

•  Historically, dynamic scoping was used more frequently in older 
languages because it's easier to implement than lexical scoping. 
–  Strategy: Just search through the call stack until variable is 

found.  No closures needed. 
–  Call stack maintains list of functions that are currently being 

called, so might as well use it to find non-local variables. 
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Iterators made better 

•  Functions like map and filter are much more powerful thanks 
to closures and lexical scope 

•  Function passed in can use any “private” data in its environment 

•  Iterator (e.g., map or filter) “doesn’t even know the data is there” 
–  It just calls the function that it's passed, and that function will 

take care of everything. 
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Review of foldr 
foldr (sometimes also called accumulate, reduce, or inject) is 
another very famous iterator over recursive structures 
 
Accumulates an answer by repeatedly applying f to answer so far 

–  (foldr f base (x1 x2 x3 x4)) computes  
(f x1 (f x2 (f x3 (f x4 base)))) 
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(define (foldr f base lst)!
  (if (null? lst) base!
    (f (car lst) !
       (foldr f base (cdr lst)))))!

–  This version “folds right”; another version “folds left” 
–  Whether the direction matters depends on f (often not) 

 



Examples with foldr 
These are useful and do not use “private data” 
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These are useful and do use “private data” 

(define (f1 lst) (foldr + 0 lst)) 
(define (f2 lst)  
  (foldr (lambda (x y) (and (>= x 0) y)) #t lst)) 

(define (f3 lo hi lst)  
  (foldr (lambda (x y)  
    (+ (if (and (>= x lo) (<= x hi)) 1 0) y))  
  0 lst)) 

 
(define (f4 g lst)  
  (foldr (lambda (x y) (and (g x) y)) #t lst))  


