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Chapter 1

Introduction

Combinatorics is a loosely-organized area of mathematics having to do with
counting and optimizing discrete mathematical structures. Topology is an area
of mathematics having to do with deforming and distinguishing continuous
mathematical structures. Topological combinatorics refers to the application
of ideas from topology to problems in combinatorics.

This thesis consists of an introduction, followed by five papers on various
topics in topological combinatorics. Each paper is given in its original form, as
its own chapter, with co-authors and current publication status indicated at the
beginning of the chapter. Here we give definitions and summarize the results
of the later chapters, including directions for further research.

1.1 Simplicial complexes

Definition 1.1.1. A simplicial complex on a set S is a subsetK ⊆ P(S), such
that if f ⊆ f ′ and f ′ ∈ K, then f ∈ K. The elements ofK are called faces, and
the elements of

⋃
f∈K f are called vertices. The dimension of a nonempty face

f ∈ K is |f | − 1. The faces of maximum dimension inK are called facets.

Definition 1.1.2. LetK be a simplicial complex on V . The geometric realiza-
tion ofK, denoted |K|, is the topological space in RV given by

|K| =

{
~x ∈ RV : xv ≥ 0,

∑
v∈V

xv = 1, supp(~x) ∈ K

}

(Here supp(~x) = {v ∈ V : xv > 0}.)

Definition 1.1.3. LetK be a simplicial complex, let v be a vertex ofK, and let
|v| be the corresponding point of |K|. Then the fundamental group ofK with
respect to basepoint v, denoted π1(K; v), is π1(|K|; |v|). (If |K| is connected,
then π1(K; v) is independent of v; in this case we use the notation π1(K).)

In Chapter 2, we prove the following results:

6



CHAPTER 1. INTRODUCTION 7

Theorem2.1.1. We have the following asymptotic results for vertex numbers
of simplicial complexes with fundamental group Zn:

(a) There is a simplicial complexXn with π1(Xn) ∼= Zn on O(n) vertices.

(b) Every simplicial complexXn with π1(Xn) ∼= Zn has Ω(n3/4) vertices.

Theorem 2.2.8. For n ∈ Nwith n 6= 2, 3, there exists:

• A simplicial complexX2n with 8n− 1 vertices, π1(X2n) ∼= Z2n.

• A simplicial complexX2n−1 with 8n− 3 vertices, π1(X2n−1) ∼= Z2n−1.

We pose the following question for further research:

Question 2.1.2. Canwe prove an analogue to Theorem 2.1.1 for fundamental
group (Zk)n (perhaps restricting k to primes or prime powers)?

1.2 Projective planes

Definition 1.2.1. A projective plane consists of sets P,L (whose elements are
called “points” and “lines,” respectively), and an incidence relation R ⊆ P × L,
satisfying the following conditions:

(1) For distinct p1, p2 ∈ P , there exists a unique l ∈ L with (p1, l), (p2, l) ∈ R.

(2) For distinct l1, l2 ∈ L, there exists a unique p ∈ P with (p, l1), (p, l2) ∈ R.

(3) There exist distinct p1, p2, p3, p4 ∈ P , such that for each l ∈ L, at most two
of the four pairs (p1, l), (p2, l), (p3, l), (p4, l) are in R.

We say that the projective plane is finite if P and L are finite.

In a finite projective plane, there exists an integer q, called the order of the
finite projective plane, such that each point is incident with exactly q + 1 lines,
and each line is incident with exactly q+1 points. Then it follows by a counting
argument that the plane has exactly q2 + q + 1 points and lines.

Definition 1.2.2. Let q be a prime power. Then PG(2,Fq) is a finite projective
plane of order q, defined with reference to the vector space F3

q over Fq:

• Let P be the set of one-dimensional subspaces of F3
q .

• Let L be the set of two-dimensional subspaces of F3
q .

• Let R ⊆ P × L be the set of pairs (p, l) of subspaces p, l with p ⊆ l.

(Conditions (1) and (2) follow from the identity dim(U+V )+dim(U ∩V ) =
dimU + dimV , and for condition (3) we may take the four one-dimensional
subspaces spanned by (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1).)



CHAPTER 1. INTRODUCTION 8

In Chapter 3, we prove the following result:

Corollary 3.6.6. Let q be a prime power. Then there exists a connected
q-dimensional simplicial complexK with π1(K) ∼= Zq, such that:

• K has exactly q2 + q + 1 vertices.

• K contains two copies of PG(2,Fq), each consisting of q2 + q + 1 facets
ofK. These two copies fully describeK, in that these 2(q2 + q+ 1) facets
are all of the facets ofK, and every face ofK is contained in a facet.

• K is cyclic; the cyclic group Zq2+q+1 acts freely onK.

• K is 2-neighborly; that is, each pair of vertices inK form an edge.

This result motivates the following conjecture:

Conjecture 3.1.2. SupposeK is a simplicial complex on n vertices, such that
π1(K) ∼= Zk, and such that K admits a free Zn-action. Then n ≥ k2 + k + 1,
with equality attainable only for prime powers k.

This conjecture implies that all cyclic planar difference sets have prime
power order, a long-standing open problem in design theory.

1.3 Clutters

Definition 1.3.1. Let V be a finite set. A clutter is a family C of subsets of V ,
such that no set in C contains any other set in C. (We refer to elements of V as
elements of C, and elements of C asmembers of C.)

Definition 1.3.2. Let C be a clutter over ground set V . A packing of C is a
set P ⊆ C of disjoint members. A fractional packing of C is a vector ~x ∈ [0, 1]C

with
∑
C3v xC ≤ 1 for all v ∈ V ; its value is

∑
C∈C xC . The packing number

ν(C) is the maximum cardinality of a packing of C.

Definition 1.3.3. Let C be a clutter over ground set V . A cover of C is a subset
U ⊆ V withU ∩C 6= ∅ for allC ∈ C. The covering number τ(C) is the minimum
cardinality of a cover of C.

We always have ν(C) ≤ τ(C), by weak duality from linear programming.

Definition 1.3.4. Let C be a clutter. We say that C packs if ν(C) = τ(C). We
say that C isminimally non-packing if C does not pack, but all proper minors
of C pack.

Definition 1.3.5. A clutter C is clean if no minor of C is a delta or the blocker
of an extended odd hole.

Definition 1.3.6. A clutter C is tangled if τ(C) = 2, and every element appears
in a minimum cover.
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Every clean tangled clutter has a fractional packing of value 2. The supports
of all such packings of C form the core of C, which has a simplified representation
called the setcore.

Definition 1.3.7. A clutter C is ideal if its set covering polyhedron is integral:{
x ∈ RV+ :

∑
v∈C

xv ≥ 1, C ∈ C

}
In Chapters 4 and 5, we prove the following results:

Theorem 4.1.5. Let C be a clean tangled clutter of rank r. Then there exists
a set S ⊆ {0, 1}r such that the following statements hold:

(i) core(C) is a duplication of cuboid(S), and up to isomorphism, S is the
unique set satisfying this property.

(ii) There is a one-to-one correspondence between the fractional packings
of value two in C and the different ways to express 1

2 · 1 as a convex
combination of the points in S.

(iii) conv(S) is a full-dimensional polytope containing 1
2 · 1 in its interior.

Theorem 4.1.7. Let C be a clean tangled clutter. Then conv(setcore(C)) is a
simplex if, and only if, setcore(C) is the cocycle space of a projective geometry.

Theorem 4.1.8. Let C be a clean tangled clutter where conv(setcore(C)) is a
simplex. If rank(C) > 3, then C has an L7 minor.

Theorem 5.1.2. Let C be a clutter, and let G = G(C). Assume that

• G is bipartite and has exactly 3 connected components,

• the first connected component of G has two vertices 1, 2 and an edge
between them,

• the second connected component of G has two vertices 3, 4 and an edge
between them,

• the third connected component of G is a path on at least four edges,
where the first edge is {5, 6}, the last edge is {5′, 6′}, 5, 5′ belong to the
same part of the bipartition, and 6, 6′ belong to the other part of the
bipartition, and

• the minimal covers of C of cardinality different from two are precisely

{2, 4, 6}, {2, 3, 5}, {1, 4, 5′}, {1, 3, 6′} and {3, 5, 6′}, {4, 5′, 6}.

Then C is an ideal minimally non-packing clutter.

We pose the following conjecture for further research:

Conjecture 4.6.1. Every clean tangled clutter embeds a projective geometry
over the two-element field.
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1.4 Circle-valued maps

In Chapter 6, we use the Borsuk-Ulam theorem to guarantee a simpler solution
to a certain functional equation. Our main result is as follows:

Corollary 6.1.4. Let f1, . . . , fn ∈ L1([0, 1];C). Then there exists h ∈ C∞([0, 1];
S1)with ‖h‖W 1,1 ≤ 1 + 2πn such that for all j,∫ 1

0

fj(x)h(x)dx = 0,

TheW 1,1-norm is defined as follows:

‖h‖W 1,1 =

∫ 1

0

|h(x)|dx+

∫ 1

0

|h′(x)|dx.

As a result, we obtain bounds for the coindex of the space of smooth circle-
valued functions with norm at most 1 + πn:

Theorem 6.6.2. For integer n ≥ 1 let Yn denote the space of C
∞-functions

f : [0, 1] → S1 with ‖f‖W 1,1 ≤ 1 + πn. Then

n ≤ coindYn ≤ 2n− 1.

We pose the following question for further research:

Problem 6.6.3. Determine the homotopy type of Yn.



Chapter 2

Vertex numbers of simplicial
complexes with free abelian
fundamental group

Joint work with Florian Frick.

To be submitted for publication.

Abstract

We show that the minimum number of vertices of a simplicial complex

with fundamental group Zn is at most O(n) and at least Ω(n3/4). For the
upper bound, we use a result on orthogonal 1-factorizations of K2n. For

the lower bound, we use a fractional Sylvester-Gallai result.

We also prove that any group presentation 〈S|R〉 ∼= Zn whose relations

are of the form gahbic for g, h, i ∈ S has at least Ω(n3/2) generators.

2.1 Introduction

Given a spaceX, a vertex-minimal triangulation ofX is a simplicial complex
homeomorphic toX using as few vertices as possible. Such triangulations are
known for only a few manifolds [8, 17, 18], and upper and lower bounds differ
significantly for many others, despite recent improvements such as [1]. For
example, the n-dimensional torus can be triangulated on 2n+1 − 1 vertices [16],
but the best known lower bounds are quadratic in n; see [5].

The number of faces of a simplicial complexX can be bounded in terms of
the Betti numbers of X [7] or in terms of the minimal number of generators
of π1(X) [22]. The effect of relations of π1(X) on vertex numbers has been
studied for cyclic torsion groups [15, 23] and for triangulations of manifolds
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with non-free fundamental group [25]. In this paper, we consider the minimal
number of vertices of a simplicial complex with fundamental group Zn:

Theorem2.1.1. We have the following asymptotic results for vertex numbers
of simplicial complexes with fundamental group Zn:

(a) There is a simplicial complexXn with π1(Xn) ∼= Zn on O(n) vertices.

(b) Every simplicial complexXn with π1(Xn) ∼= Zn has Ω(n3/4) vertices.

These results appear separately as Theorems 2.2.8 and 2.3.20; our precise
upper bound depends on parity, but is asymptotically 4n in both cases:

Theorem 2.2.8. For n ∈ Nwith n 6= 2, 3, there exists:

• A simplicial complexX2n with 8n− 1 vertices, π1(X2n) ∼= Z2n.

• A simplicial complexX2n−1 with 8n− 3 vertices, π1(X2n−1) ∼= Z2n−1.

To prove the O(n) upper bound, we construct a complexWn on n
2 + n+ 1

verticeswith fundamental groupπ1(Wn) ∼= Zn, and thenperform identifications
that preserveπ1(Wn). The latter step uses a result on orthogonal 1-factorizations
of the complete graphK2n, which is implied by a result on Room squares; see
[21, 14, 20].

To prove the Ω(n3/4) lower bound, we relate simplicial complexes to group
presentations. Specifically, we define a 3-presentation as a group presentation
〈S|R〉 whose relations are of the form gahbic for g, h, i ∈ S; this is a general-
ization of triangular presentations as studied in [3, 4, 2]. Then we show that
simplicial complexes give rise to 3-presentations.

For any group presentation 〈S|R〉 ∼= Zn, it is known that |R| ≥
(
n
2

)
; this

bound is sharp, by the presentation

〈g1, . . . , gn | gigjg−1
i g−1

j , i < j〉 ∼= Zn.

The bound |R| ≥
(
n
2

)
already gives a Ω(n2/3) lower bound in Theorem 2.1.1(b).

To strengthen this bound, we adapt the fractional Sylvester-Gallai results in
[6, 11, 10], to show that any 3-presentation 〈S|R〉 ∼= Zn has |S| = Ω(n3/2). This
translates to a Ω(n3/4) lower bound in Theorem 2.1.1(b).

We conjecture that the Ω(n3/4) bound in Theorem 2.1.1(b) can be improved
to Ω(n). We also pose the following question for further research:

Question 2.1.2. Canwe prove an analogue to Theorem 2.1.1 for fundamental
group (Zk)n (perhaps restricting k to primes or prime powers)?

We will generally assume simplicial complexesX are connected, since ifX
is disconnected, and π1(X, v) ∼= G, then the component C of X containing v
has fewer vertices thanX, and π1(C, v) ∼= G. Under this assumption, π1(X, v)
is independent of v, so we will write π1(X) instead.
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2.2 Upper bound

In this section, we show that for all n ∈ N, there exists a simplicial complexXn

on O(n) vertices with fundamental group π1(Xn) ∼= Zn. We start by construct-
ing a complexWn on n

2 + n+1 vertices with fundamental group π1(Wn) ∼= Zn,
and then obtainXn by identifying vertices and edges.

Definition 2.2.1. For n ∈ N, the simplicial complexWn is defined as follows:

• The vertex set consists of a vertex u, vertices vi,k for i ∈ [n], k ∈ [2], and
vertices wi,j,k for i, j ∈ [n], i < j, k ∈ [2].

• The edge set includes edges {u, vi,1}, {vi,1, vi,2}, {vi,2, u} for all i ∈ [n].

• For each i, j ∈ [n] with i < j, we include edges and triangles as in the
following diagram. (The vertices and edges on the boundary are those
defined above, and each planar region corresponds to a triangle.)

u

u

u

u

vj,1

vj,2

vj,1

vj,2

vi,1 vi,2

vi,1 vi,2

wi,j,1

wi,j,2

(This diagram also gives a vertex-minimal triangulation of the torus.)

Remark 2.2.2. For all n ∈ N, we have π1(Wn) ∼= Zn.

Proof. Note thatWn is homeomorphic to a CW complexW ′
n consisting of:

• A single 0-cell u.

• A 1-cell ei from u to itself for each i ∈ [n], corresponding to the edges
{u, vi,1}, {vi,1, vi,2}, {vi,2, u}.

• A 2-cell fi,j attached along eieje
−1
i e−1

j for each i, j ∈ [n], i < j, corre-
sponding to the triangles in the diagram in Definition 2.2.1 for i, j. (By
e−1
i we denote attaching in the opposite direction along ei.)

This gives a group presentation π1(W
′
n)

∼= 〈S|R〉, where

S = {ei : i ∈ [n]}, R = {eieje−1
i e−1

j : i, j ∈ [n], i < j}.

But 〈S|R〉 ∼= Zn, so π1(Wn) ∼= π1(W
′
n)

∼= Zn, as desired.
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We now establish the tools we need to perform identifications onWn.

Definition 2.2.3. LetX be a simplicial complex with vertex u ∈ V (X). We
say that a set S ⊆ V (X) \ {u} is a spur in (X,u) if the following properties hold:

(1) Each v ∈ S is adjacent to u inX.

(2) No two distinct v, v′ ∈ S are adjacent inX.

(3) No two distinct v, v′ ∈ S have a common neighbor inX other than u.

Definition 2.2.4. LetX be a simplicial complex with vertex u ∈ V (X). We
say that two spurs S, S′ in (X,u) are compatible if S ∩ S′ = ∅, and there is at
most one edge {v, v′} inX with v ∈ S, v′ ∈ S′.

Lemma 2.2.5. LetX be a simplicial complex with vertex u ∈ V (X). If S is a
spur in (X,u), then we can “collapse” S to obtain a simplicial complex, which
we denoteX/S, as follows:

• Identify all vertices v ∈ S to a single new vertex w.

• Identify all edges {u, v} for v ∈ S to a single edge {u,w}.

Moreover, π1(X/S) ∼= π1(X).

Proof. Wemay perform the identifications in the category of CW complexes,
but we need to prove that the result is a simplicial complex. Since no adjacent
vertices are identified, it remains to prove that no two distinct faces f, f ′ ofX
have the same vertex set inX/S, other than those explicitly identified.

If f, f ′ are distinct faces ofX with the same vertex set inX/S, then there
exist v, v′ ∈ S with v ∈ f , v′ ∈ f ′. If f, f ′ ⊆ {u} ∪ S, then f, f ′ are either
{v}, {v′} or {u, v}, {u, v′}, and are explicitly identified. Hence we may assume
that f, f ′ both contain a vertex x 6∈ {u} ∪ S. But then x is a common neighbor
of v, v′, a contradiction. HenceX/S is a simplicial complex.

Now let A be the subcomplex ofX with vertices u, S and edges {u, v} for all
v ∈ S, and let B be the subcomplex ofX/S with vertices u,w and edge {u,w}.
Consider the quotientsX/A, (X/S)/B in the category of CW complexes, and
note that X/A ∼= (X/S)/B. Since A,B are contractible, we have homotopy
equivalencesX/A ' X and (X/S)/B ' X/S (see [13], Proposition 0.17). By
transitivity, we haveX ' X/S, so π1(X) ∼= π1(X/S) as desired.

Lemma 2.2.6. LetX be a simplicial complex with vertex u ∈ V (X).

(a) If S, S′ are compatible spurs in (X,u), then S′ is a spur in (X/S, u).

(b) If S, S′, S′′ are pairwise compatible spurs in (X,u), then S′, S′′ are com-
patible spurs in (X/S, u).
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Proof. For (a), conditions (1), (2) in Definition 2.2.3 hold sinceS, S′ are disjoint,
and condition (3) holds since S, S′ have at most one edge between them.

For (b), S′, S′′ are spurs in (X/S, u) by (a), and compatibility follows from
the fact that collapsing S does not affect vertices or edges among S′ ∪ S′′.

Lemma 2.2.7. For n ∈ Nwith n 6= 2, 3, the vertices wi,j,k ofW2n (orW2n−1)
can be partitioned into 4n − 2 pairwise compatible spurs in (W2n, u) (or
(W2n−1, u)).

Proof. A 1-factorization of the complete graph on vertex set [2n] is a partition
of its edges into perfect matchings. An orthogonal pair of 1-factorizations is a
pair of 1-factorizations, such that no two edges appear in the same matching in
both factorizations. By [21] (see also [14, 20]), such a pair (F1, F2) exists for all
n ∈ N with n 6= 2, 3.

Then for each matchingM ∈ Fk, we construct a spur SM in (W2n, u):

SM = {wi,j,k : {i, j} ∈M}

To see that SM is a spur, note that the neighbors of wi,j,k in W2n are u, and
some vertices of the form vi,k′ , vj,k′ , wi,j,k′ for k

′ ∈ [2], so conditions (1) and (2)
hold. SinceM is a matching, condition (3) holds.

Then the SM are disjoint, and the only edges between vertices in SM , SM ′

for distinctM,M ′ are the edges {wi,j,1, wi,j,2}, which arise forM ∈ F1,M
′ ∈ F2

with {i, j} ∈ M , {i, j} ∈ M ′. Then the orthogonality of (F1, F2) implies that
the SM are pairwise compatible, and there are 2(2n− 1) = 4n− 2 such SM .

ViewingW2n−1 as an induced subcomplex ofW2n, the SM remain pairwise
compatible spurs in (W2n−1, u), upon deleting the missing vertices.

Our promised upper bound follows:

Theorem 2.2.8. For n ∈ Nwith n 6= 2, 3, there exists:

• A simplicial complexX2n with 8n− 1 vertices, π1(X2n) ∼= Z2n.

• A simplicial complexX2n−1 with 8n− 3 vertices, π1(X2n−1) ∼= Z2n−1.

Proof. StartingwithW2n orW2n−1, apply Lemma2.2.7 to obtain 4n−2 pairwise
compatible spurs. Collapse these spurs, one by one, via Lemma 2.2.5, to obtain
X2n orX2n−1 with π1(X2n) ∼= Z2n, π1(X2n−1) ∼= Z2n−1; note that Lemma 2.2.6
guarantees that the remaining spurs remain compatible. The remaining vertices
are u, the vi,k, and one vertex for each spur, so:

• The number of vertices inX2n is 1 + 4n+ (4n− 2) = 8n− 1.

• The number of vertices inX2n−1 is 1 + 2(2n− 1) + (4n− 2) = 8n− 3.

This completes the proof.
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2.3 Lower bound

In this section, we show that a simplicial complexX with fundamental group
π1(X) ∼= Zn has Ω(n3/4) vertices. We begin by relating simplicial complexes to
group presentations:

Definition 2.3.1. Given a group G, a 3-presentation ofG is a group presenta-
tion 〈S|R〉 ∼= G where each relation in R is one of the following:

• 〈〉 (the empty word).

• ga, where g ∈ S and a ∈ Z.

• gahb, where g, h ∈ S and a, b ∈ Z.

• gahbic, where g, h, i ∈ S and a, b, c ∈ Z.

We say such a word w is in normal form if the generators used are all distinct,
and a, b, c 6= 0. To “write r ∈ R in normal form” means to find w in normal
form such that r and w are conjugates in 〈S〉; in this case we write r  w.

For example, we describe a 3-presentation 〈S|R〉 ∼= Zn, derived from the
presentation for Zn given in the introduction:

S = {gi : i ∈ [n]} ∪ {hi,j : i, j ∈ [n], i < j}
R = {gigjhi,j , gjgihi,j : i, j ∈ [n], i < j}

We will use the phrase, “Let φ : 〈S|R〉 ∼= G be a 3-presentation,” to mean,
“Let 〈S|R〉 ∼= G be a 3-presentation, and fix an isomorphism φ : 〈S|R〉 → G.”

Remark 2.3.2. Let 〈S|R〉 ∼= G be a 3-presentation. Then any relation r ∈ R
can be written uniquely in normal form, up to the following conjugacies:

• gahb, hbga are conjugates in 〈S〉.

• gahbic, hbicga, icgahb are conjugates in 〈S〉.

Proof. If r is not in normal form, we can apply one of the following steps:

• If r has a zero exponent or identical adjacent generators, rewrite r with
fewer generators. (For example, g0hi becomes hi; g1g2h becomes g3h.)

• If r = gahbgc, then replace r with its conjugate ga+chb.

Each such step reduces k in r =
∏k
i=1 g

ai
i , so this process terminates. Unique-

ness follows from considering the conjugates of reduced words w.

Lemma 2.3.3. IfX is a simplicial complex on k vertices with fundamental
group π1(X) ∼= G, then there exists a 3-presentation 〈S|R〉 ∼= Gwith |S| ≤

(
k
2

)
and |R| ≤

(
k
3

)
.
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Proof. AssumeX is connected, otherwise reduce to the component ofX con-
taining the basepoint. Then the 1-skeleton ofX is a connected graph; choose a
spanning tree T of this graph. ViewX as a CW complex and T as a contractible
subcomplex ofX, and consider the quotient complexX/T , which is homotopy
equivalent toX (see [13], Proposition 0.17), so π1(X/T ) ∼= G.

NowX/T has a single 0-cell, and hence can be viewed as the presentation
complex of some group presentation 〈S|R〉 ∼= G upon choosing a direction
for each 1-cell. The 1-cells correspond bijectively to the generators, and arise
from distinct edges ofX, so |S| ≤

(
k
2

)
. The 2-cells correspond bijectively to the

relations, and arise from distinct triangles ofX, so |R| ≤
(
k
3

)
.

Moreover, each r ∈ R is of one of the following forms, depending on how
many edges of the corresponding triangle inX lie in T :

• ga, where g ∈ S are distinct and a ∈ {±1}.

• gahb, where g, h ∈ S are distinct and a, b ∈ {±1}.

• gahbic, where g, h, i ∈ S are distinct and a, b, c ∈ {±1}.

In particular, 〈S|R〉 is a 3-presentation, which completes the proof.

Hence we may turn our attention to proving lower bounds on |S| and |R| for
3-presentations 〈S|R〉 of given groups. We will use the concept of deficiency:

Definition2.3.4. Thedeficiency of a group presentationP = 〈S|R〉 is def P =
|S| − |R|. The deficiency, def G, of a group G is the maximum of def P over all
presentations P of G.

Then we have an inequality in group homology due to Epstein [12]:

def G ≤ rankH1(G;Z)− s(H2(G;Z)),

where s(H2(G;Z)) is the minimum number of generators ofH2(G;Z). (For a
related inequality in terms of free resolutions, see [26].) In particular, when G
is Zn, we obtain def Zn ≤ n−

(
n
2

)
. Thus we have several constraints on the size

of a presentation of Zn; if 〈S|R〉 ∼= Zn, then

• |S| ≥ n.

• |R| − |S| ≥
(
n
2

)
− n.

• |R| ≥
(
n
2

)
(by adding the previous two inequalities).

For the presentation of Zn described in the introduction, we have equality in
all three of these bounds. Hence def Zn = n−

(
n
2

)
.

Lemma 2.3.3 allows us to translate these bounds into lower bounds for
the number of vertices in a simplicial complex X with fundamental group
π1(X) ∼= Zn. The first inequality above gives a bound of Ω(n1/2), and the third
gives a stronger bound of Ω(n2/3). We present the latter bound in more detail:
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Remark 2.3.5. A simplicial complexX with fundamental group π1(X) ∼= Zn
has at least Ω(n2/3) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex
Xn with fundamental group π1(Xn) ∼= Zn. By Lemma 2.3.3, for each n we

obtain a 3-presentation 〈Sn|Rn〉 ∼= Zn with |Rn| ≤
(
f(n)
3

)
. But |Rn| ≥

(
n
2

)
, so(

f(n)
3

)
≥
(
n
2

)
, hence f(n) = Ω(n2/3).

Up to now, we have considered bounds on the size of arbitrary presentations
of Zn. Now we turn to proving that for 3-presentations 〈S|R〉 ∼= Zn, we have a
stronger bound |S| = Ω(n3/2). First we introduce a notion of dimension:

Definition 2.3.6. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation. Then the dimension
of a subset S′ ⊆ S, denoted dimS′, is

dim(span{φ(g) : g ∈ S′}),

where we view each φ(g) as a vector in Rn ⊇ Zn.
For r ∈ R, let r  

∏
i g
ai
i by Remark 2.3.2. The dimension of r is the

dimension of the subset {gi} ⊆ S. (Note that the set {gi} is independent of the
choice of normal form, so this definition is valid.)

Note that for a relation r with r  
∏k
i=1 g

ai
i , we have

∑k
i=1 aiφ(gi) = 0, a

linear dependence among the φ(gi). It follows that dim r < k. In particular, all
relations of a 3-presentation 〈S|R〉 ∼= Zn have dimension at most two.

Our next goal is to show that for 3-presentations 〈S|R〉 ∼= Zn with |S|min-
imal, all nonempty relations have dimension exactly two. To do this, we use
Tietze transformations ([27]; see also [19]):

Remark 2.3.7 (Tietze [27]). Consider a group presentation 〈S|R〉 ∼= G. Then:

• Let r be a word in S which is zero in 〈S|R〉. Then 〈S|R ∪ {r}〉 ∼= G.

• Let w be a word in S, and let g be fresh. Then 〈S ∪ {g}|R ∪ {g−1w}〉 ∼= G.

We refer to the passage from one presentation to another in either of these
ways, in either direction, as a Tietze transformation.

We now establish several transformations of 3-presentations:

Lemma 2.3.8. Let 〈S|R〉 ∼= Zn be a 3-presentation, and suppose g = 0 in
〈S|R〉, where g ∈ S. Then we obtain a 3-presentation 〈S′|R′〉 ∼= Zn where:

• S′ = S \ {g}.

• R′ is obtained from R by removing g wherever it appears in relations
r ∈ R. (For example, ghi ∈ R becomes hi ∈ R′.)

Proof. We apply Tietze transformations:
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• Add the redundant relation g to R to obtain R′.

• Remove gwherever it appears in relations r ∈ R′, except in the relation g ∈
R′. This is valid since g = 0 in 〈S|R′〉 by the relation g ∈ R′. (Each such
removal is two Tietze transformations, adding and removing a relation.)

• Remove the generator g, along with the relation g.

This gives the desired 3-presentation of Zn.

Lemma 2.3.9. Let 〈S|R〉 ∼= Zn be a 3-presentation, and suppose gahb = 0 in
〈S|R〉, where g, h ∈ S are distinct, a, b 6= 0, and a, b are relatively prime. Then
we obtain a 3-presentation 〈S′|R′〉 ∼= Zn where:

• S′ = S ∪ {i} \ {g, h}, where i is a fresh generator.

• R′ is obtained from R by replacing g with ib and h with i−a wherever
they appear in relations r ∈ R.

Proof. There exist c, d ∈ Z with ac+ bd = 1. We apply Tietze transformations:

• Add the relation gahb, which is redundant by assumption.

• Add a generator i, along with the relation i−1gdh−c, to obtain a new 3-
presentation φ′ : 〈S′|R′〉 ∼= Zn.

• Add the relation g−1ib, which is redundant since

ib = gbdh−bc = g1−ach−bc = g(gahb)−c = g

in 〈S′|R′〉. (We use commutativity of g, h in 〈S′|R′〉, which follows from
commutativity of φ′(g), φ′(g) in Zn.)

• Similarly, add the relation h−1i−a, which is redundant since

i−a = g−adhac = g−adh1−bd = h(gahb)−d = h

in 〈S′|R′〉.

• Replace g with ib and h with i−a wherever they appear in relations r ∈ R′

(i.e. in all relations other than the new relations g−1ib, h−1i−a).

• Remove the generators g, h, along with the relations g−1ib, h−1i−a.

• Remove the relation i−1gdh−c, which is now i−1ibdiac = 0.

• Remove the relation gahb, which is now (ib)a(i−a)b = 0.

This gives the desired 3-presentation of Zn.

Lemma 2.3.10. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation with |S| minimal.
Then for each nonempty r ∈ R, we have r  gahbic, where g, h, i ∈ S are
distinct and a, b, c 6= 0, and dim r = 2.
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Proof. Let r  
∏k
i=1 g

ai
i by Remark 2.3.2. By Lemma 2.3.8, no gi are zero in

〈S|R〉, which implies k 6= 1. By Lemma 2.3.9, no distinct gi, gj have φ(gi), φ(gj)
in a common one-dimensional subspace of Rn, which implies k 6= 2.

Hence k = 3, so r  gahbic for g, h, i ∈ S distinct and a, b, c 6= 0. Then the
considerations above imply dim{g, h} = 2, so dim r ≥ 2. Since φ(g), φ(h), φ(i)
are dependent in Rn, we have dim r = 2.

Our next transformation requires the notion of a sparse set of relations:

Definition 2.3.11. Let 〈S|R〉 ∼= Zn be a 3-presentation, and letS′ ⊆ S,R′ ⊆ R.
Then define the set R′[S′] ⊆ R′ as

R′[S′] = {r ∈ R′ : r  w, and w uses only generators in S′}.

Definition 2.3.12. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation, and let R′ ⊆ R.

• For S′ ⊆ S with dimS′ = 2, R′ is sparse on S′ if |R′[S′]| ≤ |S′| − 1.

• R′ is sparse if R′ is sparse on all S′ ⊆ S with dimS′ = 2.

• A set S′ ⊆ S is critical for R′ if dimS′ = 2 and |R′[S′]| = |S′| − 1.

Remark 2.3.13. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation with |S| minimal,
so that Lemma 2.3.10 applies. Suppose R′ ⊆ R is sparse, and S′, S′′ ⊆ S are
critical for R′. If R[S′] ∩R[S′′] 6= ∅, then S′ ∪ S′′ is also critical for R′.

Proof. Let r ∈ R[S′] ∩R[S′′], and write r  gahbic by Lemma 2.3.10. Then the
set {φ(g), φ(h), φ(i)} spans a 2-dimensional subspace U ⊆ Rn. Since dimS′ =
dimS′′ = 2, we have span(φ(S′)) = span(φ(S′′)) = U . Then

U ⊆ span(φ(S′ ∩ S′′)) ⊆ span(φ(S′)) = U,

so span(φ(S′∩S′′)) = U , and also span(φ(S′∪S′′)) = U+U = U . In particular,
dim(S′ ∩ S′′) = dim(S′ ∪ S′′) = 2. Therefore, we have

|R′[S′ ∪ S′′]| = |R′[S′]|+ |R′[S′′]| − |R′[S′ ∩ S′′]|
≥ (|S′| − 1) + (|S′′| − 1)− (|S′ ∩ S′′| − 1)

≥ |S′ ∪ S′′| − 1.

Hence S′ ∪ S′′ is critical for R′.

Corollary 2.3.14. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation with |S|minimal,
so that Lemma 2.3.10 applies. Suppose R′ ⊆ R is sparse. Then there exists a
collection C of certain critical sets S′ ⊆ S for R′, such that:

(1) If S′′ ⊆ S is critical for R′, then there exists S′ ∈ C with S′′ ⊆ S′.

(2) If S′, S′′ ∈ C, then R[S′] ∩R[S′′] = ∅.
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Proof. First take C = {S′ ⊆ S : S′ critical for R′}; then (1) holds. If S′, S′′ ∈ C
with R[S′] ∩R[S′′] 6= ∅, then by Remark 2.3.13, S′ ∪ S′′ is critical for R′. Then
consider removing S′, S′′ from C, and adding S′ ∪ S′′ if it is not present.

While (2) fails, apply the step above repeatedly. Each step preserves (1) and
reduces |C|, so this process terminates with C such that (1), (2) both hold.

Lemma 2.3.15. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation with |S| minimal,
so that Lemma 2.3.10 applies. Partition R as R = Rs tRe tRo (mnemonic:
“sparse,” “extra,” “other”), such that Rs is sparse, and for each r ∈ Re with
r  gahbic, we have {g, h, i} ⊆ S′ for some critical S′ ⊆ S for Rs. Then we
obtain a 3-presentation 〈S′|R′〉 ∼= Zn where:

• S′ includes all generators in S.

• R′ includes all relations in Ro.

• |R′| − |S′| = |Rs|+ |Ro| − |S|.

Proof. Obtain a collection C of critical sets for Rs via Corollary 2.3.14. Then for
each S′′ ∈ C, consider the integer span of φ(S′′) in Zn, that is, the set

Λ =

{
k∑
i=1

aiφ(gi) : k ∈ N, ai ∈ Z, gi ∈ S′′

}
.

We have Λ ∼= Z2 (see [9], Theorem 1.12.3), so Λ has a basis {x1, x2}. We apply
Tietze transformations (for each S′′ ∈ C) to 〈S|R〉. (We will introduce some
relations with more than three generators, but we remove these later.)

• For each j ∈ [2], write xj =
∑
i aiφ(gi) for ai ∈ Z, gi ∈ S′′. Then add a

generator hj , along with the relation h−1
j

∏
i g
ai
i , to obtain φ′ : 〈S′|R′〉 ∼=

Zn. Note that

φ′(hj) = φ

(∏
i

gaii

)
=
∑
i

aiφ(gi) = xj .

• For each g ∈ S′′, write φ(g) =
∑
j bjxj for bj ∈ Z. Then add the relation

g−1
∏
j h

bj
j , which is redundant since

φ′

g−1
∏
j

h
bj
j

 = −φ(g) +
∑
j

bjφ
′(hj) = 0,

where we use φ′(hj) = xj in the last step.

• Add a generator h∗, along with the relation h−1
∗ h1h2.

• Add the relation h−1
∗ h2h1, which is redundant since Zn (and hence our

current 〈S′|R′〉 ∼= Zn) is abelian. Note that the relation h1h2h−1
1 h−1

2 is
now implied by the relations h−1

∗ h1h2, h
−1
∗ h2h1.
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• Remove all relations r ∈ R[S′′], which are now redundant. To see this,

first rewrite r in terms of only the hj , via the relations g
−1
∏
j h

bj
j . Then

rewrite r as
∏
j h

bj
j for bj ∈ Z, via the relations hihjh−1

i h−1
j . Applying φ′,

we obtain
∑
j bjxj = 0, so bj = 0 by the lattice structure of Λ ∼= Z2. Hence

we have rewritten r as the empty word, so r is redundant.

• Remove the relations h−1
j

∏
i g
bi
i added in the first step, which are now

redundant, since we may rewrite any such relation in terms of only the
hj , and then apply the previous argument.

After applying these steps for each S′′ ∈ C, we call the resulting 3-presentation
〈S′|R′〉. For each S′′ ∈ C, we have added three generators and a net of |S′′| −
|R[S′′]|+ 2 relations. By definition of C, the sets R[S′′] are disjoint for distinct
S′′ ∈ C. Hence we have

|R′| − |S′| = |R| − |S|+
∑
S′′∈C

(|S′′| − |R[S′′]| − 1)

= |R| − |S|+
∑
S′′∈C

(|S′′| − |Rs[S′′]| − 1)−
∑
S′′∈C

|Re[S′′]|

= |R| − |S| − |Re|
= |Rs|+ |Ro| − |S|.

This completes the proof.

We need one more transformation of presentations:

Lemma 2.3.16. Let φ : 〈S|R〉 ∼= Zn be a 3-presentation, let S′ ⊆ S, and let
d = dimS′. Then we obtain a presentation 〈S′′|R′′〉 ∼= Zn−d where:

• S′′ = S \ S′.

• R′′ is obtained from R by adding d relations to form R′, then removing
each g ∈ S′ wherever it appears in relations r ∈ R′.

Proof. Let U = span(φ(S′)) in Rn. Then U ∩ Zn is a lattice of dimension d, so
we may take a basis {x1, . . . , xd} of U ∩ Zn, and extend to a basis {x1, . . . , xn}
of Zn (see Chapter 2, Lemma 4 of [24]). Then for each i ∈ [d], let wi be a word
in 〈S〉 with φ(wi) = xi in Zn. Let R′ = R ∪ {w1, . . . , wd}.

We claim 〈S|R′〉 ∼= Zn−d. To prove this, we will construct an isomorphism
ψ : 〈S|R′〉 → Zn−d. Let p : Zn → Zn−d be the projection to the last n − d
coordinates under the basis {x1, . . . , xn}; more precisely,

p

(
n∑
i=1

aixi

)
=

n∑
i=d+1

aiyi,
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where {yd+1, . . . , yn} is a basis for Zn−d. Note that p is linear. Now define ψ on
S by ψ(g) = p(φ(g)) for all g ∈ S, and extend ψ to 〈S〉 by the universal property
of the free group. Then for any word w =

∏
i g
ai
i in 〈S〉, we have

ψ(w) =
∑
i

aiψ(gi) =
∑
i

aip(φ(gi)) = p

(∑
i

aiφ(gi)

)
= p(φ(w)).

In particular, for r ∈ R, we have ψ(r) = p(φ(r)) = p(0) = 0. For the wi above,
we have ψ(wi) = p(φ(wi)) = p(xi) = 0. Therefore, ψ is well-defined on 〈S|R′〉.

To show ψ is injective, suppose ψ(w) = 0 for w ∈ 〈S〉. Then p(φ(w)) = 0, so

φ(w) =
∑d
i=1 aixi for some ai ∈ Z. Then φ(w) = φ(

∏d
i=1 w

ai
i ) so w =

∏d
i=1 w

ai
i

in 〈S|R〉 by the injectivity of φ. Since R ⊆ R′, we have w =
∏d
i=1 w

ai
i in 〈S|R′〉

also. But since wi ∈ R, this implies w = 0 in 〈S|R′〉.
To show ψ is surjective, it suffices to show that for each d < i ≤ n, there

exists w ∈ 〈S〉 with ψ(w) = yi. By the surjectivity of φ, take w with φ(w) = xi.
Then ψ(w) = p(φ(w)) = p(xi) = yi as desired. Hence 〈S|R′〉 ∼= Zn−d.

Now all generators g ∈ S′ have g = 0 in 〈S|R′〉, so repeated application of
Lemma 2.3.8 gives the desired result.

Next, we need the following Sylvester-Gallai-type result. This is only a slight
modification of the results in [6, 11, 10]; we translate the average case result in
[11] from an affine setting to a linear one (as in [10]), with a guarantee on |E′|:

Theorem 2.3.17. Let V ⊆ Rd be a finite set of points, and let E be a finite set
of (not necessarily distinct) triples {u, v, w} of distinct points u, v, w ∈ V lying
in a common 2-dimensional subspace of Rd, so that (V,E) forms a 3-uniform
hypergraph. Suppose that for each induced subhypergraph (V ′, E′) of (V,E)
with dim(span V ′) ≤ 2, we have |E′| ≤ |V ′| − 1. Then for λ > 0, there exists
an induced subhypergraph (V ′, E′) of (V,E)with |E| − |E′| < λ|V |, and

dim(span V ′) ≤ 12|V |/λ.

Proof. Following the proof of Theorem 13 in [6], consider (V,E) as a 3-uniform
hypergraph, and repeatedly remove vertices of degree less than λ. This removes
less than λ|V | edges, so we obtain a sub-hypergraph (V ′, E′) with |E| − |E′| <
λ|V | and minimum degree at least λ.

Fix u ∈ V ′; the neighborhood N(u) in (V ′, E′) forms a graph G(u), where
we consider two vertices v, w ∈ N(u) adjacent iff {u, v, w} ∈ E′. If v, w ∈ N(u)
are adjacent inG(u), thenw lies in span({u, v}) ⊆ Rd. Therefore, if {v1, . . . , vk}
form a component C of G(u), then U = {u, v1, . . . , vk} has dim(span U) ≤ 2,
so the number of triples in E′ using only points in U is at most k. Hence the
number of edges in C is at most k. Summing over components C, the number
of neighbors of v in (V ′, E′) is at least deg(V ′,E′) v ≥ λ.

Now choose a nonzero vector ~n ∈ Rd not orthogonal to any v ∈ V ′, and
define an affine hyperplaneH = {~x ∈ Rd : ~x · ~n = 1}. Then to each v ∈ V ′ we
associate the unique point ṽ ∈ span({v})∩H; note that u, v, w lie in a common
two-dimensional subspace of Rd iff ũ, ṽ, w̃ lie on a common line inH .
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Then the set Ṽ ′ = {ṽ : v ∈ V ′}meets the criteria for a δ-SG configuration
in [11] with δ = λ/|V |, except that ṽ, w̃ are not necessarily distinct for distinct
v, w ∈ V ′. But the proof of Theorem 5.1 in [11] still holds if points in a δ-SG
configuration are allowed to repeat, since the design matrix construction in
Lemma 5.2 in [11] does not rely on points being distinct. Therefore, the affine
dimension of Ṽ ′ is at most 12/δ, so dim(span V ′) ≤ 12|V |/λ as desired.

The proof above holds even if points in V are not required to be distinct, so
we obtain the following more general result:

Theorem 2.3.18. Let V be a finite set with a function φ : V → Rd, and let
E be a finite set of (not necessarily distinct) triples {u, v, w} of distinct points
u, v, w ∈ V with φ(u), φ(v), φ(w) lying in a common 2-dimensional subspace
of Rd, so that (V,E) forms a 3-uniform hypergraph. Suppose that for each
induced subhypergraph (V ′, E′) of (V,E)with dim(span φ(V ′)) ≤ 2, we have
|E′| ≤ |V ′| − 1. Then for λ > 0, there exists an induced subhypergraph (V ′, E′)
of (V,E)with |E| − |E′| < λ|V |, and

dim(span φ(V ′)) ≤ 12|V |/λ.

Now we prove our bound on the size of 3-presentations of Zn:

Theorem 2.3.19. If 〈S|R〉 ∼= Zn is a 3-presentation, then |S| = Ω(n3/2).

Proof. Fix an isomorphism φ : 〈S|R〉 → Zn. Assume that |S| is minimal; then
by Lemma 2.3.10, for each r ∈ R we have r  gahbic for g, h, i ∈ S distinct,
and dim r = 2. Then let R′ be an inclusion-wise maximal sparse subset of R.

Now let k = |S|, let c > 0 be a constant to be determined later, and apply
Theorem 2.3.18 with V = S,E = {{g, h, i} : r  gahbic, r ∈ R′}, and λ = ck/n,
to obtain S′ ⊆ S such that:

(1) |R′ \R[S′]| ≤ ck2/n.

(2) dimS′ ≤ 12|V |/λ = 12n/c.

If there exists g ∈ S \ S′ with dim(S′ ∪ {g}) = dimS′, then we may replace S′

with S′ ∪ {g}, preserving (1) and (2). Therefore, we may assume that for each
g ∈ S \ S′, we have φ(g) 6∈ span φ(S′).

Now partition R as R = Rs tRe tRo, where:

• Rs = R′ \R[S′].

• Re = (R \R′) \R[S′].

• Ro = R[S′].

Note that |Rs| ≤ ck2/n by the above. Rs is sparse, since sparseness is closed
under taking subsets. Also, for each r ∈ Re with r  gahbic, we have {g, h, i} ⊆
S′′ for some critical S′′ ⊆ S for R′, since r 6∈ R′ and R′ is maximal. But since
r 6∈ R[S′], we have {g, h, i} 6⊆ S′; assumeWLOG g 6∈ S′. Then φ(g) 6∈ span φ(S′)
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by the above, so span φ(S′′) 6⊆ span φ(S′). Then R[S′′] ∩ R[S′] = ∅, since any
r′ ∈ R[S′′] determines the 2-dimensional subspace span φ(S′′). Therefore, S′′

is also critical for Rs. Hence we may apply Lemma 2.3.15 to 〈S|R〉, to obtain a
3-presentation 〈S′′|R′′〉 ∼= Zn with |R′′| − |S′′| = |Rs|+ |Ro| − |S|.

Finally, let d = dimS′, and apply Lemma 2.3.16 to 〈S′′|R′′〉 using S′ ⊆ S′′,
to obtain 〈S′′′|R′′′〉 ∼= Zn−d. Then remove all relations in R′′′ arising from
relations in Ro = R[S′], which are now trivial, to obtain 〈S′′′|R′′′′〉 ∼= Zn−d.
Then

|R′′′′| − |S′′′| = (|R′′′| − |Ro|)− |S′′′|
= (|R′′|+ d− |Ro|)− (|S′′| − |S′|)
= (|R′′| − |S′′| − |Ro|) + d+ |S′|
= (|Rs| − |S|) + d+ |S′|
= |Rs|+ d− |S \ S′|
≤ ck2/n+ d.

But by the bound def Zm ≤ m−
(
m
2

)
, we have |R′′′′| − |S′′′| = Ω((n− d)2). Take

c = 24; then d ≤ 12n/c = n/2, so n − d ≥ n/2. Hence |R′′′′| − |S′′′| = Ω(n2).
Since d ≤ n/2, we have ck2/n = Ω(n2). Therefore, k = Ω(n3/2) as desired.

Theorem 2.3.20. A simplicial complexX with fundamental group π1(X) ∼=
Zn has at least Ω(n3/4) vertices.

Proof. Let f(n) be the minimum number of vertices in a simplicial complex
Xn with fundamental group π1(Xn) ∼= Zn. By Lemma 2.3.3, for each n we

obtain a 3-presentation 〈Sn|Rn〉 ∼= Zn with |Sn| ≤
(
f(n)
2

)
. But |Sn| = Ω(n3/2),

so
(
f(n)
2

)
= Ω(n3/2), hence f(n) = Ω(n3/4).
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Chapter 3

Simplicial complexes, finite
projective planes, and colored
configurations

To be submitted for publication.

Abstract

In the 7-vertex triangulation of the torus, the 14 triangles can be par-

titioned as T1 t T2, such that each Ti represents the lines of a copy of the

Fano plane PG(2,F2). We generalize this observation by constructing, for

each prime power q, a simplicial complexK with q2 + q + 1 vertices and
2(q2 + q + 1) facets consisting of two copies of PG(2,Fq).

Our construction works for any colored k-configuration, defined as

a k-configuration whose associated bipartite graph G is connected and

has a k-edge coloring χ : E(G) → [k], such that for all v ∈ V (G), a, b, c ∈
[k], following edges of colors a, b, c, a, b, c from v brings us back to v. We

give constructions of colored k-configurations from planar difference sets

and commutative semifields. Then we give one-to-one correspondences

between (1) Sidon sets of order 2 and size k + 1 in groups with order n,
(2) linear codes with radius 1 and index n in Ak, and (3) colored (k + 1)-
configurations with n points and n lines.

3.1 Introduction

The torus T 2 has a 7-vertex triangulation, arising from the following diagram:

0 1 2 3 4 5 6 0

3 4 5 6 0 1 2 3

28
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To see this, identify any two vertices with the same label, and identify any
two edges whose ends have the same label. Combinatorially, this identification
produces a simplicial complex on 7 vertices. Topologically, this identification
is equivalent to first identifying the leftmost and rightmost edges to obtain a
cylinder, and then identifying the top and bottom circles to obtain T 2.

This triangulationK of T 2 has several notable properties:

• K has exactly 7 vertices. (In fact,K is vertex-minimal; any triangulation
of T 2 has at least 7 vertices; see [11, 16].)

• K contains the Fano plane; the triangles pointing up,

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2},

can be viewed as the lines of the Fano plane on points {0, . . . , 6}. (Similarly
for the triangles pointing down.)

• K is cyclic; the cyclic group Z7 acts onK by cyclically permuting labels.

• K is 2-neighborly; that is, each pair of vertices inK form an edge.

The Fano plane is also known as the projective geometry PG(2,F2), where
F2 is the field of order 2, and similar projective geometries PG(2,Fq) exist for
any prime power q. Thus we ask:

Question 3.1.1. Does the 7-vertex triangulation of T 2, along with its notable
properties, generalize to prime power dimensions q > 2?

Our main result is a construction (Theorem 3.5.2), which takes as its input a
colored (k+1)-configuration C (see Definition 3.2.7), and produces a simplicial
complexK(C)with π1(K(C)) ∼= Zk. The complexK(C) is not T k in general, but
can be made homeomorphic to T k by adding vertices and faces.

For example, if C is PG(2,Fq), then we obtain the following:

Corollary 3.6.6. Let q be a prime power. Then there exists a connected
q-dimensional simplicial complexK with π1(K) ∼= Zq, such that:

• K has exactly q2 + q + 1 vertices.

• K contains two copies of PG(2,Fq), each consisting of q2 + q + 1 facets
ofK. These two copies fully describeK, in that these 2(q2 + q+ 1) facets
are all of the facets ofK, and every face ofK is contained in a facet.

• K is cyclic; the cyclic group Zq2+q+1 acts freely onK.

• K is 2-neighborly.

In the general construction, the complexK(C) contains one copy of C, and
one copy of its dual C∗, which is obtained from C by switching points and lines.
Since PG(2,Fq) is isomorphic to its dual, in this case we obtain two copies of
PG(2,Fq). See Section 3.6 for details.
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Wemake no claim of vertex-minimality. However, we note that the smallest
known triangulations of T k use 2k+1 − 1 vertices ([15]; see [16]). Our complex
K from Corollary 3.6.6 uses fewer vertices but lacks the full structure of T k. We
conjecture thatK is vertex-minimal in the following sense:

Conjecture 3.1.2. SupposeK is a simplicial complex on n vertices, such that
π1(K) ∼= Zk, and such that K admits a free Zn-action. Then n ≥ k2 + k + 1,
with equality attainable only for prime powers k.

This conjecture implies that all cyclic planar difference sets have prime
power order, an open problem in design theory (see [1], Chapter VII). In this
way, our work gives a possible topological approach to finding obstructions to
the existence of planar difference sets and finite projective planes.

Our construction is closely related to a construction of linear codes from
Sidon sets (see [14]). In our construction, we assign labels to a k-dimensional
lattice and then quotient according to that labeling. The labeling of the lattice
can be viewed as a linear code in the lattice Ak defined in Section 3.4. We show
a relationship between three mathematical structures:

Theorem 3.8.4. We have one-to-one correspondences (up to isomorphism)
between any two of the following three mathematical structures:

(1) Pairs (G,B), where G is an abelian group with |G| = n, and B is a Sidon
set of order 2 in Gwith |B| = k + 1.

(2) Linear codes Lwith radius 1 in Ak, with |Ak/L| = n.

(3) Colored (k + 1)-configurations C with n points and n lines.

The relationship between the first two structures above is known [14]; our
contribution is to introduce the third. As a result, we obtain new constructions
of Sidon sets and linear codes (for example, from Theorem 3.7.3). Also, we
raise the possibility of topological obstructions to the existence of Sidon sets
and linear codes, via the simplicial complexK(C) given by Theorem 3.5.2.

3.2 Colored k-configurations

Following Grünbaum [7], we define a k-configuration as a certain kind of k-
regular incidence structure (where k ∈ N):

Definition 3.2.1. A k-configuration consists of finite sets P,L (whose ele-
ments are called “points” and “lines,” respectively), and an incidence relation
R ⊆ P × L, satisfying the following conditions:

(1) There do not exist distinct p1, p2 ∈ P and distinct l1, l2 ∈ L with (pi, lj) ∈ R
for all i, j ∈ {1, 2}. (That is, no two points are on more than one common
line; equivalently, no two lines contain more than one common point.)

(2) Each point is incident with exactly k lines.
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(3) Each line is incident with exactly k points.

For a k-configuration C, we will often write P,L,R as P (C), L(C), R(C).

A simple counting argument shows the following:

Remark 3.2.2. In a k-configuration, the numbers of points and lines are
equal.

A k-configuration C is equivalent to a k-regular bipartite graph G(C) with
no 4-cycle; the two parts of the graph correspond to the sets P,L, and the edge
set of the graph corresponds to the relation R. The “no 4-cycle” requirement
corresponds to condition (1), and the k-regularity corresponds to conditions
(2) and (3). We will often require G(C) to be connected:

Definition 3.2.3. A k-configuration C is connected if G(C) is connected.

Remark 3.2.4. Let C be a k-configuration with k > 0, and suppose there
exists a path in G(C) between any two points of C. Then C is connected.

Proof. Since k > 0, each line in C is incident with at least one point.

We now consider k-coloring the incidences of a k-configuration C; that is,
we consider functions χ : R(C) → [k], such that if two incidences (p1, l1), (p2, l2)
have p1 = p2 or l1 = l2, then χ(p1, l1) 6= χ(p2, l2). This corresponds to the usual
notion of a k-edge coloring of G(C):

Definition 3.2.5. For any graph G, a k-edge coloring of G is a function
χ : E(G) → [k] that assigns distinct colors to distinct edges sharing a vertex.

Note that if G is k-regular, then G always has a k-edge coloring, since line
graphs of bipartite graphs are perfect [13]. (More concretely, we can obtain χ
by repeated applications of Hall’s theorem, for example.) For our construction,
we will need the k-edge coloring χ to satisfy an additional property:

Definition 3.2.6. Let G be a k-regular bipartite graph, and let χ be a k-edge
coloring of G. For each vertex v ∈ V (G) and each color c ∈ [k], let φc(v) be the
unique vertex w ∈ V (G) such that vw is an edge of G with color χ(vw) = c.

We say that χ has the 6-cycle property, if, for each vertex v ∈ V (G), and for
each triple (a, b, c) of distinct colors a, b, c ∈ [k], we have

(φc ◦ φb ◦ φa ◦ φc ◦ φb ◦ φa)(v) = v.

(This equation means that following the unique path from v along edges with
colors a, b, c, a, b, c, in order, produces a 6-cycle in G.)

Definition 3.2.7. A colored k-configuration is a connected k-configuration
C, along with a k-edge coloring χ(C) of G(C) satisfying the 6-cycle property.
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Our construction takes a colored k-configuration as its input; the construc-
tion involves assigning labels to the latticeAn, and the 6-cycle property ensures
that we assign labels consistently.

Given the definitions above, it is natural to ask, which k-configurations can
be colored? This question has an analogue in Sidon sets and is likely difficult
to answer in general (see Section 3.8). Still, in Sections 3.6 and 3.7 we give
several positive results in this direction. For example, PG(2,Fq), which is a
(q + 1)-configuration, can be colored (Corollary 3.6.5).

Duality

The duality on k-configurations extends to colored k-configurations:

Definition 3.2.8. Let C be a colored k-configuration. Then we obtain a dual
colored k-configuration C∗ as follows:

• The points of C∗ are the lines of C.

• The lines of C∗ are the points of C.

• A point p and line l are incident in C∗ if p, l are incident in C.

• The color of the incidence (p, l) in C∗ is the color of (l, p) in C.

Group actions

Our next goal is to define group actions on colored k-configurations:

Definition 3.2.9. A homomorphism ψ : C → D of colored k-configurations
C,D consists of functions ψP : P (C) → P (D), ψL : L(C) → L(D), ψχ : [k] → [k],
with the following properties:

• If (p, l) ∈ R(C), then (ψP (p), ψL(l)) ∈ R(D).

• If (p, l) ∈ R(C), then χ(D)(ψP (p), ψL(l)) = ψχ(χ(C)(p, l)).

In other words, ψP , ψL preserve incidences and color classes of incidences.

Then a group action ρ by a group G on a colored k-configuration C is, as
usual, a group homomorphism ρ : G→ Aut(C). Note that ρ consists of group
actions ρP and ρL by G on P (C), L(C) preserving incidences and color classes
of incidences.

3.3 Finite projective planes

In our definition of k-configuration, condition (1) says that any two points
are on at most one common line, and vice versa. By replacing “at most one”
with “exactly one,” we obtain a definition (though not the usual one) of a finite
projective plane. We recall the usual definition [8] of a projective plane:
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Definition 3.3.1. A projective plane consists of sets P,L (whose elements are
called “points” and “lines,” respectively), and an incidence relation R ⊆ P × L,
satisfying the following conditions:

(1) For distinct p1, p2 ∈ P , there exists a unique l ∈ L with (p1, l), (p2, l) ∈ R.

(2) For distinct l1, l2 ∈ L, there exists a unique p ∈ P with (p, l1), (p, l2) ∈ R.

(3) There exist distinct p1, p2, p3, p4 ∈ P , such that for each l ∈ L, at most two
of the four pairs (p1, l), (p2, l), (p3, l), (p4, l) are in R.

We say that the projective plane is finite if P and L are finite.

In a finite projective plane, there exists an integer q, called the order of the
finite projective plane, such that each point is incident with exactly q + 1 lines,
and each line is incident with exactly q + 1 points (see [20]). It follows by a
counting argument that the plane has exactly q2 + q + 1 points and lines.

The typical example of a finite projective plane is PG(2,Fq):

Definition 3.3.2. Let q be a prime power. ThenPG(2,Fq) is a finite projective
plane of order q, defined with reference to the vector space F3

q over Fq:

• Let P be the set of one-dimensional subspaces of F3
q .

• Let L be the set of two-dimensional subspaces of F3
q .

• Let R ⊆ P × L be the set of pairs (p, l) of subspaces p, l with p ⊆ l.

(Conditions (1) and (2) follow from the identity dim(U+V )+dim(U ∩V ) =
dimU + dimV , and for condition (3) we may take the four one-dimensional
subspaces spanned by (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1).)

It is an open problem whether there exists a finite projective plane whose
order q is not a prime power. The strongest negative result is given by Bruck &
Ryser [4]; if the order q of a finite projective plane has q ≡ 1, 2 (mod 4), then q
is a sum of two squares.

To clarify the connection with k-configurations, note that any finite pro-
jective plane with order q is a (q + 1)-configuration. Conversely, any (q + 1)-
configuration with q ≥ 2 satisfying conditions (1) and (2) is a finite projective
plane; this follows from Hall’s characterization of degenerate planes [8].

3.4 The lattice An and the simplicial complex Kn

We first introduce the lattice An, which is well known from the sphere packing
literature (see [5]):

Definition 3.4.1. For n ≥ 0, the lattice An is defined by

An =

{
(x1, . . . , xn+1) ∈ Zn+1 :

n+1∑
i=1

xi = 0

}
.
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For example, A2 is equivalent to the hexagonal lattice, and A3 is equivalent
to the face-centered cubic lattice. Locally, An has the structure of the expanded
simplex (see [6]). We may consider An a metric space by using a scaled `1-
distance, d(~x, ~y) = ‖~x− ~y‖1/2. (This metric d can be viewed as a graph metric,
where we consider ~x, ~y to be adjacent if ‖~x− ~y‖1 = 2.)

We now introduce a simplicial complex structureKn on An; the simplicial
complexKn is known as the Rips complex of diameter 1 of An [21].

Definition 3.4.2. For n ≥ 0, the simplicial complexKn is defined as follows:

• The vertices V (Kn) ofKn are the points of An.

• The faces ofKn are the sets F with d(~x, ~y) = 1 for all distinct ~x, ~y ∈ F .

Note thatKn is a flag simplicial complex; that is, if F is a set of vertices of
Kn, and all pairs of vertices in F are edges of Kn, then F is a face of Kn. In
this way,Kn is determined by its 1-skeleton. ForK2, the facets are exactly the
triangles of the hexagonal lattice; here is (0, 0, 0) and its neighbors:

(0, 0, 0)
(1, 0,−1)

(0, 1,−1)(−1, 1, 0)

(−1, 0, 1)

(0,−1, 1) (1,−1, 0)

All six shaded triangles are facets of K2; the light and dark shading indicate
“positive” and “negative” facets, respectively, as defined below.

To gain intuition for An and Kn, consider the projection p : Rn+1 → Rn
onto the first n coordinates, that is,

p(x1, . . . , xn+1) = (x1, . . . , xn).

Then p carries An isomorphically (as an additive group) to Zn, and embedsKn

into Rn. For example, we draw the facets of p(K2) inside the unit square of R2,
and the facets of p(K3) inside the unit cube of R3:
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We see thatK2 is a tiling of the plane {(x, y, z) ∈ R3 : x+ y + z = 0}, but for
n > 2,Kn does not fill the hyperplane it spans. (This is why our construction
will not generally give a trianguation of Tn.)

Remark 3.4.3. The simplicial complexKn has the following properties:

• Kn has dimension n.

• The facets ofKn are of the form

{~x+ ~ei}i∈[n+1] or {~x− ~ej}j∈[n+1]

for fixed ~x ∈ Zn+1 with sum of coordinates −1 (in the first case) or 1 (in
the second). We call facets of the first type “positive,” and facets of the
second type “negative.” We call ~x the “root” of the facet in either case.
(Here the ~ei are the standard basis vectors in Rn+1.)

• Each vertex ofKn is incident with exactly n+ 1 facets of each type.

• Each face F ofKn is contained in a facet ofKn. If dimF ≥ 2, then this
facet is unique.

Proof. Let F be a face ofKn, and assume ~0 ∈ F . Then each other vertex of F is
of the form ~ei−~ej for distinct i, j ∈ [n+1]. Denote such a vertex by the ordered
pair (i, j). If F contains two nonzero vertices (i1, j1), (i2, j2), then i1 = i2 or
j1 = j2. It follows that the nonzero vertices of F are of the form

{(i1, j), . . . , (ik, j)} or {(i, j1), . . . , (i, jk)}.

In the first case, we get a positive facet rooted at−~ej; in the second case, we get
a negative facet rooted at ~ei. The rest follows.

Remark 3.4.4. The group action of An on itself by addition induces a group
action of An on the simplicial complexKn.

Proof. By the translational symmetry ofKn, addition by any ~x ∈ An takes any
face ofKn to another face ofKn.

Recall that a simplicial complex K is simply connected if its geometric
realization is connected and has trivial fundamental group. We saw above that
the facets ofK3 fail to fill 3-dimensional space; however, p(K3) does contain
the 2-skeleton of (a CW complex homeomorphic to) R3. Hence K3 is simply
connected. This generalizes toKn for arbitrary n:

Remark 3.4.5. The simplicial complexKn is simply connected.
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Proof. The space Rn has a CW complex structureX; for each ~x ∈ Zn, I ⊆ [n],
the CW complexX has a |I|-cell given by

f~x,I =

{
~x+

∑
i∈I

λi~ei : λi ∈ [0, 1]

}
.

We claim each 2-cell f~x,{i,j} is present in p(Kn) as the union of two triangles.
To see this, let ~v ∈ An be the unique vector with p(~v) = ~x. Then f~x,{i,j} lies in
the image p(Kn) as follows:

~v

~v + ~ej − ~en+1

~v + ~ei − ~en+1

~v + ~ei + ~ej − 2~en+1

~x

~x+ ~ej

~x+ ~ei

~x+ ~ei + ~ej

Moreover, all 1-dimensional faces ofKn appear in this diagram for some ~x, i, j,
so the 2-skeleton sk2(Kn) can be obtained from sk2(X) by attaching 2-faces.
Since the fundamental group of a complex depends only on its 2-skeleton, we
have π1(sk2(X)) = π1(Rn) = 0, so π1(sk2(Kn)) = 0, so π1(Kn) = 0.

The result above can also be understood combinatorially:

Definition 3.4.6. Let K be a simplicial complex. A path γ in K is a finite
sequence of vertices v0, . . . , vm, for somem > 0, with vi, vi+1 adjacent for each
i ∈ {0, . . . ,m− 1}. We say that γ starts at v0 and ends at vm, and we may refer
to γ as a path from v0 to vm.

Definition 3.4.7. LetK be a simplicial complex, let u, v, w ∈ V (K), let γ be
a path v0, . . . , vm inK from u to v, and let δ be a path w0, . . . , wn inK from v
to w. Then we define γ · δ as the path v0, . . . , vm, w1, . . . , wn inK from u to w.

Definition 3.4.8. LetK be a simplicial complex, and let γ, γ′ be paths inK.
We define a relation γ ' γ′ (in words, “γ, γ′ are homotopic”) inductively:

(1) If u, v ∈ V (K) are adjacent, then u, v, u ' u and u ' u, v, u.

(2) If u, v, w ∈ V (K) are contained in a common face {u, v, w} of K, then
u, v, w ' u,w and u,w ' u, v, w.

(3) If γ ' γ′ and δ ' δ′, then γ · δ ' γ′ · δ′.

(4) For any path γ, we have γ ' γ.

(5) If γ ' γ′ and γ′ ' γ′′, then γ ' γ′′.
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(An induction on the definition shows that (') is symmetric, and that γ ' γ′

only if γ, γ′ start at the same vertex and end at the same vertex.)

The usual topological notion of a simplicial complex being simply connected
is equivalent to a combinatorial notion using the definitions above (see [17]).
As a result, we get the following corollary to Remark 3.4.5:

Corollary 3.4.9. Let ~u,~v ∈ V (Kn), and let γ, γ
′ be paths inKn from ~u to ~v.

Then we have γ ' γ′.

With these preliminaries in hand, we now describe our construction.

3.5 Construction of simplicial complexes from colored
k-configurations

We now give a construction producing a labeling of the complexKn defined in
Section 3.4. After taking a quotient ofKn according to this labeling, we obtain
a simplicial complex with properties analogous to the 7-vertex triangulation of
T 2 (Theorem 3.5.2).

Lemma 3.5.1. Let C be a colored (k + 1)-configuration. Then there exists a
surjective labeling ` : V (Kk) → P (C) of the vertices ofKk, such that:

(1) If ~u,~v ∈ V (Kk) are adjacent, then `(~u) 6= `(~v).

(2) Given ~u ∈ V (Kk) and a point p ∈ P (C), there is at most one vertex ~v ∈
V (Kk) adjacent to ~uwith `(~v) = p. (If C is also a projective plane, then “at
most one” can be replaced with “exactly one.”)

(3) If ~u,~v ∈ V (Kk) satisfy `(~u) = `(~v), then `(~u + ~w) = `(~v + ~w) for all
~w ∈ V (Kk). (That is, ` is invariant under translation by ~u− ~v.)

Proof. Given adjacent vertices ~u,~v ∈ V (Kk) and a label `(~u), we will establish
a rule for determining `(~v). We may uniquely write ~v = ~u− ~ei + ~ej for distinct
i, j ∈ [k + 1]; then our rule proceeds as follows:

• Let l be the line of C incident with p such that (p, l) has color i in C.

• Let q be the point of C incident with l such that (q, l) has color j in C.

• Take `(~v) = q.

We can also restate the rule using the functions φc from Definition 3.2.6:

`(~v) = (φj ◦ φi)(`(~u))

(That is, in G(C), following the unique path from the point `(~u) along edges
with colors i, j, in order, brings us to `(~v).)
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Now let γ be a path inKk from ~u to ~v, and let p ∈ P (C). Consider assigning
`(~u) = p, and then successively applying the rule above on each pair of consec-
utive vertices of γ, until we obtain a label `(~v) = q at the end of γ. We define
`γ(p) = q. We claim that `γ respects path homotopy:

Claim. Let γ, γ′ be paths inKk. If γ ' γ′, then `γ = `γ′ .

Proof of claim. We induct on the definition of ('). Cases (3), (4), (5) are clear,
so we turn to (1), (2):

Case (1). ~u,~v ∈ V (Kk) are adjacent; γ is ~u,~v, ~u, and γ
′ is ~u.

Proof of case (1). Write ~v = ~u− ~ei + ~ej as above. Then we have

`γ = φi ◦ φj ◦ φj ◦ φi = φi ◦ φi = 1P (C) = `γ′ ,

where 1P (C) is the identity function on P (C).

Case (2). ~u,~v, ~w ∈ V (Kk) are pairwise adjacent; γ is ~u,~v, ~w, and γ
′ is ~u, ~w.

Proof of case (2). By Remark 3.4.3, ~u,~v, ~w are contained in a unique facet F of
Kk. On one hand, if F is positive, then we have

~u = ~x+ ~ei, ~v = ~x+ ~ej , ~w = ~x+ ~ek′ .

As a result, we have

`γ = φk′ ◦ φj ◦ φj ◦ φi = φk′ ◦ φi = `γ′ .

On the other hand, if F is negative, then we have

~u = ~x− ~ei, ~v = ~x− ~ej , ~w = ~x− ~ek′ .

As a result, we have

`γ = φj ◦ φk′ ◦ φi ◦ φj , `γ′ = φi ◦ φk′ .

Since φi, φj , φk′ are involutions, we have `
−1
γ′ = φk′ ◦ φi, so

`γ ◦ `−1
γ′ = φj ◦ φk′ ◦ φi ◦ φj ◦ φk′ ◦ φi = 1P

by the 6-cycle property. Precomposing by `γ′ gives `γ = `γ′ . This completes the
proof of the case and the claim.

We now define `. Fix ~v0 ∈ V (Kk) and p0 ∈ P (C), and for each ~v ∈ V (Kk)
and each path γ from ~v0 to ~v, define `(~v) = `γ(p0). SinceKk is connected, there
is at least one such γ. Also, `(~v) does not depend on γ, since if γ, γ′ are two
paths from ~v0 to ~v, then γ ' γ′ by Corollary 3.4.9, so `γ = `γ′ by the claim
above. Since C is connected, ` is surjective.
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To show that property (1) holds, let γ be a path in Kk from ~v0 to ~u, and
consider the path γ,~v obtained by appending ~v to γ. Then write ~v = ~u− ~ei + ~ej
as above, where i 6= j. We have

`(~v) = `γ,~v(p0) = (φj ◦ φi)(`γ(p0)) = (φj ◦ φi)(`(~u)).

It suffices to prove that (φj ◦ φi)(p) 6= p for all p ∈ P (C). This is clear in G(C);
if we follow edges of distinct colors i, j, in order, we cannot arrive back at the
starting vertex.

To show that property (2) holds, let γ be a path in Kk from ~v0 to ~u. The
neighbors of ~u in Kk are ~vi,j = ~u − ~ei + ~ej for i, j ∈ [k + 1], i 6= j. Therefore,
`(~vi,j) = (φj ◦ φi)(`(~u)); equivalently, in G(C), `(~vi,j) is obtained from `(~u) by
following edges of colors i, j, in order. Any i, j with `(~vi,j) = p correspond to
a unique line incident with `(~u) and p. But `(~u), p lie on at most one common
line, so there is at most one vertex ~vi,j with `(~vi,j) = p. (For a projective plane
C, replace “at most” with “exactly.”)

To show that property (3) holds, first suppose ~w is adjacent to the zero
vector, say ~w = −~ei + ~ej . Let γ be a path inKk from ~v0 to ~u. Then

`(~u+ ~w) = `γ,~w(p0) = (φj ◦ φi)(`γ(p0)) = (φj ◦ φi)(`(~u)).

Hence if `(~u) = `(~v), then `(~u+ ~w) = `(~v + ~w). We obtain property (3) for all
~w by induction on the distance d(~0, ~w) inKk. This completes the proof.

Theorem 3.5.2. Let C be a colored (k + 1)-configuration with n points and
n lines. Then there exists a connected k-dimensional simplicial complexK(C)
with π1(K(C)) ∼= Zk, such that:

(1) K(C) has exactly n vertices.

(2) K(C) contains a copy of C, consisting of n facets ofK, and a copy of the
dual (k + 1)-configuration C∗, consisting of n other facets ofK. These two
copies fully describeK, in that these 2n facets are all the facets ofK, and
every face ofK is contained in a facet.

(3) SupposeG acts on C via a group action ρ. ThenG acts onK(C) via ρP , the
action induced by ρ on the points of C. If ρ is free, then ρP is free also.

(4) If C is also a projective plane, thenK(C) is 2-neighborly.

Proof. Apply Lemma 3.5.1 to obtain a labeling ` : V (Kk) → P (C). Then define

H = {~v ∈ Ak : `(~v) = `(~0)}.

For ~u,~v ∈ Ak, with `(~u), `(~v) = 0, property (3) of Lemma 3.5.1 implies

`(~u+ ~v) = `(~0 + ~v) = `(~v) = `(~0).

Likewise, property (3) also implies

`(−~v) = `(~0− ~v) = `(~v − ~v) = `(~0).
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Therefore,H is an additive subgroup of Ak. Moreover, for any two ~u,~v ∈ Ak,
we have the following chain of equivalences:

`(~u) = `(~v) ⇔ `(~u− ~v) = `(~0) ⇔ ~u− ~v ∈ H.

Hence the orbits of H in Ak correspond bijectively to points p ∈ P (C) in the
image of `. Since ` is surjective, there are exactly n such orbits.

We claim thatH spans the vector space {(x1, . . . , xk+1) ∈ Rk+1 :
∑
i xi = 0}.

Suppose otherwise; then there exists ~v ∈ Ak with ~v 6∈ spanH. Then we also
have λ~v 6∈ spanH for all nonzero λ ∈ Z. But then `(λ~v) is distinct for distinct
λ ∈ Z, a contradiction since P (C) is finite. Therefore, H is a k-dimensional
lattice, so we haveH ∼= Zk.

By Remark 3.4.4, Ak acts on Kk by addition, so H does also. Therefore,
the quotientKk/H is a well-defined k-dimensional CW complex, and in fact
is a simplicial complex by (1), (2) of Lemma 3.5.1. Since H is a “covering
space action” in the sense of Hatcher [9], and Kk is simply connected, we
have π1(Kk/H) ∼= H ∼= Zk (See [9], Proposition 1.40). Hence we may take
K(C) = Kk/H .

It remains to show properties (1) through (4) from the theorem statement.
Note that property (1) holds since there are n orbits ofH in Ak, and property
(4) holds by (2) of Lemma 3.5.1.

To show that property (2) holds, consider two adjacent vectors ~u,~v ∈ Kk,
and consider the line l to determine `(~v) from `(~u), or vice versa. If ~u = ~x+ ~ei,
~v = ~x+ ~ej , then l = φi(`(~x+ ~ei)) = φj(`(~x+ ~ej)). Hence for the positive facet
rooted at ~x, the line l is shared by all pairs of vertices in the facet. Therefore,
the positive facets ofK(C) correspond to the lines of C.

To show that property (3) holds, it suffices to prove that ρP maps facets
ofK(C) to other facets. This holds for positive facets, since these correspond
to lines of C by (2). Since ρ respects colors, ρP also respects the orientation
of positive facets. Since each edge ofK(C) is contained in a positive facet, ρP
represents a translation inKk. Hence ρP also respects negative facets.

3.6 Construction of colored k-configurations from
planar difference sets

We begin by defining planar difference sets (see [1]):

Definition 3.6.1. Let G be an abelian group. A planar difference set in G is
a subset A ⊆ G, such that for each g ∈ G other than the identity, there exist
unique a1, a2 ∈ A with g = a1 − a2. The order of A is |A| − 1.

Note that |G| = (k + 1) · k + 1 = k2 + k + 1. In fact, a planar difference set
forms a projective plane, in the following way:

Remark 3.6.2 (Singer [19]). LetG be an abelian group, and letA be a planar
difference set in G, with |A| = k + 1. Then we obtain a projective plane of
order k, where:
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• The point set P is the set of elements of G.

• The line set L is also the set of elements of G.

• A point p ∈ P and line l ∈ L are incident if p− l ∈ A.

Proof. Fix distinct points p1, p2 ∈ G. Then a line l ∈ G is incident with both
of p1, p2 if and only if p1 − l = a1 and p2 − l = a2 for a1, a2 ∈ A, implying
p1−p2 = a1−a2. Such a1, a2 ∈ A are uniquely determined by p1, p2, so any two
points lie on exactly one common line. The dual statement holds similarly.

For example, the projective planes PG(2,Fq) all arise in this way:

Remark3.6.3 (Singer [19]). Let q be a prime power. Then the finite projective
plane PG(2,Fq) corresponds to a planar difference set in Zq2+q+1.

However, it is not known whether all finite projective planes arising from
planar difference sets are isomorphic to PG(2,Fq); see [10] for a partial result
in this direction. We now give our construction.

Theorem 3.6.4. Let G be an abelian group, and let A be a planar difference
set in Gwith |A| = k + 1. The corresponding projective plane can be colored,
giving a colored (k + 1)-configuration C. Moreover, G acts freely on C.

Proof. Let C be the projective plane described in Remark 3.6.2. Then C is
connected by Remark 3.2.4, since any two points lie on a common line.

We define a coloring χ : R(C) → A by χ(p, l) = p − l; note that p − l ∈ A
since p, l are incident in C. To check the 6-cycle property, let a, b, c ∈ A, and
consider the path p0, l0, p1, l1, p2, l2, p3 in G(C) with

p0 − l0 = a

p1 − l0 = b

p1 − l1 = c

p2 − l1 = a

p2 − l2 = b

p3 − l2 = c

Taking an alternating sum gives p0 − p3 = 0, so the 6-cycle property holds.
The free group action of G on C is given by g · p = g + p for points p ∈ G,

and g · l = g + l for lines l ∈ G; this preserves incidences and colors.

Corollary 3.6.5. Let q be a prime power. Then PG(2,Fq) can be colored,
giving a colored (q + 1)-configuration C with q2 + q + 1 points and q2 + q + 1
lines. Moreover, Zq2+q+1 acts freely on C.

Proof. By Remark 3.6.3 and Theorem 3.6.4.

As a corollary, we get the following promised result:



CHAPTER 3. SIMPLICIAL COMPLEXES AND PROJECTIVE PLANES 42

Corollary 3.6.6. Let q be a prime power. Then there exists a connected
q-dimensional simplicial complexK with π1(K) ∼= Zq, such that:

• K has exactly q2 + q + 1 vertices.

• K contains two copies of PG(2,Fq), each consisting of q2 + q + 1 facets
ofK. These two copies fully describeK, in that these 2(q2 + q+ 1) facets
are all of the facets ofK, and every face ofK is contained in a facet.

• K is cyclic; the cyclic group Zq2+q+1 acts freely onK.

• K is 2-neighborly.

Proof. By Corollary 3.6.5 and Theorem 3.5.2, since PG(2,Fq) is self-dual.

If we express PG(2,Fq) as a planar difference set, the duality between posi-
tive and negative facets becomes clear. For example, PG(2,F2) corresponds to
the planar difference set {0, 1, 3} in Z/7Z. The positive facets are translates of
{0, 1, 3}, and the negative facets are translates of {0,−1,−3}:

0 1 2 3 4 5 6 0

3 4 5 6 0 1 2 3

3.7 Construction of colored k-configurations from
commutative semifields

In this section, we give a construction of colored k-configurations from com-
mutative semifields. A semifield has the properties of a field, except that multi-
plication is not required to be associative or commutative. More concretely:

Definition 3.7.1 ([12]; see [22]). A semifield consists of a set S and operations
(+), (·), such that:

• S forms a group under addition; we call the additive identity 0.

• If a, b ∈ S, a 6= 0, then there exists unique x ∈ S with a · x = b.

• If a, b ∈ S, a 6= 0, then there exists unique y ∈ S with y · a = b.

• If a, b, c ∈ S, then a · (b+ c) = ab+ ac, and (a+ b) · c = ac+ bc.

• There exists 1 ∈ S with 1 6= 0, and 1 · a = a · 1 = a for all a ∈ S.

This definition is important in the classification of projective planes. Any
projective plane admits a coordinatization with coordinates in a ternary ring;
conversely, any ternary ring gives rise to a projective plane. If the ternary ring
is also a semifield, the corresponding projective plane has certain symmetries.
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Moreover, if the ternary ring is also a field, the corresponding projective plane
is PG(2,Fq). (See [22] for definitions and details.)

Like fields, the number of elements in a semifield is always a prime power
(see [12], Section 2.5). But there are commutative semifields that are not fields;
see [22] for examples. We outline the construction of projective planes from
semifields; this is a special case of the general construction for ternary rings:

Theorem 3.7.2 (Hall [8]). Let F be a semifield with |F | = q. Then there
exists a finite projective plane of order q.

Proof. The point set P consists of:

• Points (x, y) for x, y ∈ F .

• Points (x) for x ∈ F t {∞}; this is a “point at infinity” for slope x.

The line set L consists of:

• Lines [a, b] for a, b ∈ F ; this is the “line” y = ax+ b.

• Lines [a] for a ∈ F t {∞}; this is the “line” x = a.

The set of incidence relations R consists of:

• Incidences ((x, y), [a, b]) for x, y, a, b ∈ F with y = ax+ b.

• Incidences ((x, y), [x]) for x, y ∈ F .

• Incidences ((a), [a, b]) for a, b ∈ F .

• Incidences ((x), [∞]) for x ∈ F .

• Incidences ((∞), [a]) for a ∈ F .

• The incidence ((∞), [∞]).

We omit the proofs of the projective plane properties.

We now give our construction.

Theorem 3.7.3. Let F be a commutative semifield with |F | = q. Then there
exists a colored q-configuration with q2 points and q2 lines.

Proof. Starting with the finite projective plane from Theorem 3.7.2, delete all
points and lines other than those of the form (x, y), [a, b]. This deletes a line
through each remaining point and a point on each remaining line; hence the
result is a q-configuration C with q2 points and q2 lines.

To show that C is connected, it suffices by Remark 3.2.4 to show that there
exists a path in G(C) between any two points (x1, y1), (x2, y2). If x1 6= x2, then
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let a ∈ F satisfy a · (x2 − x1) = y2 − y1, and let b = y1 − a · x1. Then (x1, y1) lies
on [a, b] by the definition of b, and (x2, y2) lies on [a, b] by:

a · x2 + b = a · x2 + (y1 − a · x1)
= a · (x2 − x1) + y1

= (y2 − y1) + y1

= y2.

Hence (x1, y1), (x2, y2) are adjacent if x1 6= x2. Since F has at least two distinct
elements 0, 1, there exists a path in G(C) between any two points of C.

Define a coloring χ : R(C) → F by χ((x, y), [a, b]) = x+ a. In an incidence
((x, y), [a, b]), each of y, b are uniquely determined by the other three variables,
which implies that χ is a q-edge coloring ofG(C). To check the 6-cycle property,
let c, d, e ∈ F , and consider the path (x0, y0), [a1, b1], (x1, y1), [a2, b2], (x2, y2),
[a3, b3], (x3, y3) in G(C) with

x0 + a1 = c

x1 + a1 = d

x1 + a2 = e

x2 + a2 = c

x2 + a3 = d

x3 + a3 = e

Taking an alternating sum gives x0 − x3 = 0; it remains to show y0 = y3. Note
that a1 = c− x0, a2 = c− d+ e− x0, and a3 = e− x0. We have

y3 − y0 = (y3 − y2) + (y2 − y1) + (y1 − y0)

= a3 · (x3 − x2) + a2 · (x2 − x1) + a1 · (x1 − x0)

= (e− x0) · (e− d) + (c− d+ e− x0) · (c− e) + (c− x0) · (d− c)

= c · d+ d · e+ e · c− d · c− e · d− c · e
= 0.

where we use commutativity in the last step. This completes the proof.

In Theorem 3.7.3, we can take F to be the field Fq, which gives a colored
q-configuration C; contrast this with Corollary 3.6.5, which gives a colored
(q + 1)-configuration C′. The underlying q-configuration of C can be completed
to that of C′ by adding points and lines at infinity, but the coloring of C cannot
be extended to C′; in this sense, the two constructions are distinct.

3.8 Relationships with Sidon sets & linear codes

We now explain the connection between Sidon sets, linear codes, and colored
k-configurations. To begin, we define a Sidon set:
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Definition 3.8.1 ([18]; see [14]). LetG be an abelian group, written additively.
A setB = {b0, b1, . . . , bk} ⊆ G is a Sidon set of order h if the sums bi1 + · · ·+ bih ,
0 ≤ i1 ≤ · · · ≤ ih ≤ k, are all different.

For h = 2, this condition is equivalent to the condition that the differences
bi − bj for i 6= j are all distinct, so |G| ≥ k2 + k + 1. Then a planar difference
set in G is exactly a Sidon set B of order 2 with |B| = k and |G| = k2 + k + 1.
As with planar difference sets, Sidon sets may be translated; if B is a Sidon set
of order h in G, then so is {b+ g : b ∈ B} for any g ∈ G.

Next, we define a linear code:

Definition 3.8.2 (see [14]). A linear code with radius r in Ak is a lattice
L ⊆ Ak, such that the balls Br(~x) = {~y : d(~x, ~y) ≤ r} for ~x ∈ L are all disjoint.
We say that L is perfect if the balls Br(~x) also cover Ak.

Then we have a correspondence between Sidon sets and linear codes; recall
from Section 3.4 that An ∼= Zn on ignoring the last coordinate:

Theorem 3.8.3 (Kovačević [14]).

(a) Let B = {0, b1, . . . , bk} be a Sidon set of order 2 in an abelian group G,
and suppose B generates G. Then the lattice

L = {~x ∈ Ak :

k∑
i=1

xibi = 0}

is a linear code with radius 1 in Ak, andG ∼= Ak/L. (Here xibi denotes the
sum in G of |xi| copies of bi if xi > 0 and of −bi if xi < 0.)

(b) Conversely, if L is a linear code with radius 1 in Ak, then the group G =
Ak/L contains a Sidon set B of order 2 with |B| = k + 1, such that B
generates G.

We also have a correspondence with colored (k + 1)-configurations:

Theorem 3.8.4. We have one-to-one correspondences (up to isomorphism)
between any two of the following three mathematical structures:

(1) Pairs (G,B), where G is an abelian group with |G| = n, and B is a Sidon
set of order 2 in Gwith |B| = k + 1.

(2) Linear codes Lwith radius 1 in Ak, with |Ak/L| = n.

(3) Colored (k + 1)-configurations C with n points and n lines.

Proof. Theorem3.8.3 gives a correspondence between (1), (2), and Lemma3.5.1
gives a map from (3) to (2), since if `(~0) = p, then `−1(p) is a linear code with
radius 1 by the properties of the lemma. We now give a map from (2) to (3).

Let L be a linear code with radius 1 in Ak, with |Ak/L| = n. We define a
colored (k + 1)-configuration C as follows:
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• The point set P is the set of elements of Ak/L.

• The line set L is also the set of elements of Ak/L.

• A point p ∈ P and line l ∈ L are incident if p − l = ~ei − ~ek+1 for some
i ∈ [k + 1]; the color of the incidence is i.

Fix distinct points p1, p2 ∈ Ak/L. Then a line l ∈ Ak/L is incident with both of
p1, p2 if and only if p1 − l = ~ei − ~ek+1 and p2 − l = ~ej − ~ek+1 for i, j ∈ [k + 1],
implying p1 − p2 = ~ei − ~ej , and i 6= j. Now the vectors ~ei − ~ej for distinct
i, j ∈ [k+1] have pairwise distance 1 or 2 inAk, and hence are pairwise distinct
in Ak/L. Therefore, there is at most one choice of i, j with p1 − p2 = ~ei − ~ej ,
so there is at most one l incident with both of p1, p2. The dual statement holds
similarly, so C is a (k + 1)-configuration.

To show that C is connected, it suffices by Remark 3.2.4 to show that there
exists a path in G(C) between any two points p1, p2 ∈ Ak/L. Suppose we have
p1 − p2 = ~ei − ~ek+1; then p1, p2 both lie on the line p2. The general case follows
by writing p1 − p2 as an integer combination of vectors of the form ~ei − ~ek+1.

To show that C has the 6-cycle property, let a, b, c ∈ [k+1], and consider the
path p0, l0, p1, l1, p2, l2, p3 in G(C) with

p0 − l0 = ~ea − ~ek+1

p1 − l0 = ~eb − ~ek+1

p1 − l1 = ~ec − ~ek+1

p2 − l1 = ~ea − ~ek+1

p2 − l2 = ~eb − ~ek+1

p3 − l2 = ~ec − ~ek+1

Taking an alternating sum gives p0 − p3 = 0, so the 6-cycle property holds.
Hence we have a construction η from (2) to (3) and a construction θ from

(3) to (2). It remains to show that η, θ are inverses.

Claim. Let L be a linear code with radius 1 in Ak, C = η(L), L′ = θ(C), where θ
constructs ` : Ak → Ak/L starting with `(~0) = ~0. Then we have L = L′.

Proof of claim. It suffices to prove `(~x) = ~x for all ~x ∈ Ak. For points p ∈ Ak/L,
we have φi(p) = p−~ei+~ek+1; for lines l ∈ Ak/L, we have φi(l) = p+~ei−~ek+1.
Therefore, if `(~u) = ~u for ~u ∈ Ak, then

`(~u− ~ei + ~ej) = (φj ◦ φi)(`(~u))
= (φj ◦ φi)(~u)
= ~u− ~ei + ~ej .

Then by induction, `(~x) = ~x for all ~x ∈ Ak as desired.

Claim. Let C be a colored (k + 1)-configuration, L = θ(C), C′ = η(L). Then we
have an isomorphism C ∼= C′.
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Proof of claim. Let ` : Ak → P (C) be the labeling constructed by θ, and define
`−1 : P (C) → Ak/L such that ` ◦ `−1 is the identity map on P (C), and `−1 ◦ ` is
the quotient map Ak → Ak/L.

We claim `−1(φi(l)) = `−1(φj(l)) + ~ei − ~ej , for all i, j ∈ [k + 1]. To see this,
take the identity `(~x− ~ei + ~ej) = (φj ◦ φi)(`(~x)), and let

l = φj(`(~x− ~ei + ~ej)) = φi(`(~x)).

Then we have ~x = `−1(φj(l)) + ~ei − ~ej , and ~x = `−1(φi(l)). Therefore, we have

`−1(φi(l)) = `−1(φj(l)) + ~ei − ~ej .

Now we define a map C → C′:

• Map p ∈ P (C) to `−1(p) in P (C′) = Ak/L.

• Map l ∈ L(C) to `−1(φk+1(l)) in L(C′) = Ak/L.

We have the following chain of logical equivalences:

p, l incident in C
⇔ p = φi(l), some i ∈ [k + 1]

⇔ `−1(p) = `−1(φi(l)), some i ∈ [k + 1]

⇔ `−1(p) = `−1(φk+1(l)) + ~ei − ~ek+1, some i ∈ [k + 1]

⇔ `−1(p), `−1(φk+1(l)) incident in C′

Hence our map C → C′ preserves both incidences and colors, which are given
by the index i above, so C ∼= C′ as desired.

By the claims above, η, θ are inverses, which completes the proof.

Let C be the colored (q+1)-configuration obtained from a planar difference
set via Theorem 3.6.4. Then in the theorem above, we have G ∼= Zq2+q+1,
|B| = q + 1, and L perfect. This case of the correspondence between (1) and (2)
is discussed in Section 3 of [14]; in particular, we recover a result of Singer on
Sidon sets ([19]; see [3]). We also obtain a converse to Theorem 3.6.4:

Corollary 3.8.5. Let C be a colored (k + 1)-configuration, such that C is
also a projective plane. Then C arises from a planar difference set (via Theo-
rem 3.6.4).

Proof. Since C is a projective plane, C has k2 + k+1 points and k2 + k+1 lines.
Apply Theorem 3.8.4 to obtain a pair (G,B), where G is an abelian group with
|G| = k2 + k + 1, and B is a Sidon set of order 2 in G with |B| = k + 1. Then B
is a planar difference set as discussed above. Apply Theorem 3.8.4 in reverse
to obtain a colored (k + 1)-configuration C′ with C ∼= C′. The map from (1) to
(3) in Theorem 3.8.4 is equivalent to the construction in Theorem 3.6.4, so C′

arises from the planar difference set B in G.
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Now let C be the colored q-configuration obtained from a commutative
semifield F with |F | = q via Theorem 3.7.3. Then in Theorem 3.8.4, we have
|G| = q2, |B| = q. This can be compared with the following known result:

Remark 3.8.6 (Bose [2]; see [3, 14]). Let q be a prime power. Then there
exists a Sidon set B of order 2 in Zq2−1, with |B| = q.

Our Sidon set with |G| = q2, |B| = q, is suboptimal in the sense that G is
larger than necessary, but we are not aware that it exists in the literature. We
close with several questions for further research:

Question 3.8.7. Does the Sidon set in Remark 3.8.6 have a nice description
as a colored q-configuration?

Question 3.8.8. Which connected k-configurations C can be colored to form
a colored k-configuration?

Note that if C is also a projective plane, then C can be colored if and only if C
arises from a planar difference set, by Theorem 3.6.4 and Corollary 3.8.5. The
question still stands for C not a projective plane.
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Abstract

A clutter is clean if it has no delta or the blocker of an extended odd hole

minor, and it is tangled if its covering number is two and every element

appears in aminimum cover. Clean tangled clutters have been instrumental

in progress towards several open problems on ideal clutters, including the

τ = 2 Conjecture.
Let C be a clean tangled clutter. It was recently proved that C has a

fractional packing of value two. Collecting the supports of all such fractional

packings, we obtain what is called the core of C. The core is a duplication
of the cuboid of a set of 0− 1 points, called the setcore of C.

In this paper, we prove three results about the setcore. First, the convex

hull of the setcore is a full-dimensional polytope containing the center point

of the hypercube in its interior. Secondly, this polytope is a simplex if, and

only if, the setcore is the cocycle space of a projective geometry over the

two-element field. Finally, if this polytope is a simplex of dimension more

than three, then C has the clutter of the lines of the Fano plane as a minor.

Our results expose a fascinating interplay between the combinatorics

and the geometry of clean tangled clutters.

4.1 Introduction

A clutter is a family C of subsets of a finite set V where no set contains another
one [15]. We refer to V as the ground set, to the elements in V simply as

50
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elements, and to the sets in C as members. A transversal is any subset of V
that intersects every member exactly once, whereas a cover is any subset of V
that intersects every member at least once. A cover isminimal if it does not
contain another cover. The family of the minimal covers of C forms another
clutter over ground set V ; this clutter is called the blocker of C and is denoted
b(C). It is well-known that b(b(C)) = C [15, 17]. Given disjoint I, J ⊆ V , the
minor of C obtained after deleting I and contracting J is the clutter C \ I/J
over ground set V − (I ∪ J) whose members are the inclusion-wise sets in
{C − J : C ∈ C, C ∩ I = ∅}. It is well-known that b(C \ I/J) = b(C)/I \ J [22].

A delta is any clutter over a ground set of cardinality at least three, say
{a1, a2, a3, . . . , an}, whose members are

{a2, a3, . . . , an} and {a1, ai}, i = 2, . . . , n.

(See Figure 4.1.) Observe that a delta is identically self-blocking, that is, every
member is a minimal cover, and vice versa. Observe further that the elements
and members of a delta correspond to the points and lines of a degenerate
projective plane.

An extended odd hole is any clutter over a ground set of cardinality at
least five and odd, say {a1, . . . , an}, whose minimum cardinality members are
{a1, a2}, {a2, a3}, . . . , {an−1, an}, {an, a1}. That is, the minimum cardinality
members correspond to the edges of an odd hole. (See Figure 4.1.) Note that
there may exist other members, but those members would have cardinality at
least three. Observe that every cover of an extended odd hole with n elements
has cardinality at least n+1

2 .

Definition 4.1.1 ([9]). A clutter is clean if it has no minor that is a delta or
the blocker of an extended odd hole.

Observe that if a clutter is clean, then so is every minor of it. Clean clutters
were introduced recently and a polynomial recognition algorithm was provided
for them [4]. The class of clean clutters includes ideal clutters, clutters without
an intersecting minor, and binary clutters [9].

The covering number of a clutter C, denoted τ(C), is the minimum cardinal-
ity of a cover.

Definition 4.1.2 ([11]). A clutter is tangled if it has covering number two and
every element belongs to a minimum cover.

Observe that if a clutter has covering number at least two, then it has a
tangled minor, obtained by repeatedly deleting elements that keep the covering
number at least two.

Let us define an important class of tangled clutters. A clutter is a cuboid if
its ground set can be relabeled [2n] := {1, . . . , 2n} for some integer n ≥ 1, such
that {1, 2}, {3, 4}, . . . , {2n− 1, 2n} are transversals [8, 10]. In particular, every
member has cardinality n. Note that every cuboid without a cover of cardinality
one is tangled. Consider, for instance, the clutter

Q6 = {{2, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}},
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…

a1

<latexit sha1_base64="CcOlsYip8mvLuZmMk549+Po4C1g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrL42R</latexit>

a2

<latexit sha1_base64="bn042XOjc28JOG5tTWiRF6OtLgo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXql69enFXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPss42S</latexit>

a3

<latexit sha1_base64="S/04sO5YEtNPcRbLbrNRfVmiGXA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseiF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVlDVpLGLVCVAzwSVrGm4E6ySKYRQI1g7GNzO//ciU5rF8MJOE+REOJQ85RWOle+yf98sVt+rOQf4SLycVyNHolz97g5imEZOGCtS667mJ8TNUhlPBpqVeqlmCdIxD1rVUYsS0n81PnZITqwxIGCtb0pC5+nMiw0jrSRTYzgjNSC97M/E/r5ua8MrPuExSwyRdLApTQUxMZn+TAVeMGjGxBKni9lZCR6iQGptOyYbgLb/8l7TOql6tenFXq9Sv8ziKcATHcAoeXEIdbqEBTaAwhCd4gVdHOM/Om/O+aC04+cwh/ILz8Q3uN42T</latexit>

an

<latexit sha1_base64="oC5OI+xmMUNL1nf2jx9utDyfu5E=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9pX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWql/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP0eyjc4=</latexit>

. . .<latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit><latexit sha1_base64="4fajA5Sub0emPp2TPmVj1aHk3ls=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3ZehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AvB+POA==</latexit>

a1

<latexit sha1_base64="CcOlsYip8mvLuZmMk549+Po4C1g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0QPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDrL42R</latexit>

a2

<latexit sha1_base64="bn042XOjc28JOG5tTWiRF6OtLgo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9qv9csVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXql69enFXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QPss42S</latexit>
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Figure 4.1: Left: The members of a delta represented the lines of a degenerate
projective plane. Middle: The minimum cardinality members of an extended
odd hole represented as the edges of an odd hole. Right: The members of Q6

represented as the triangles ofK4.

whose elements and members correspond to the edges and triangles of the
complete graph K4, as labeled in Figure 4.1. Then Q6 is a cuboid – as {1, 2},
{3, 4}, {5, 6} are transversals – without a cover of cardinality one. Moreover, it
can be readily checked that Q6 has no minor that is a delta or the blocker of an
extended odd hole. Consequently, Q6 is a clean tangled clutter.

More generally, clean tangled clutters have been the subject of recent study
as they have been instrumental in the progress made towards various outstand-
ing problems on ideal clutters, ranging from recognizing idealness [4], the
τ = 2 Conjecture [13] and new examples of ideal minimally non-packing clut-
ters [5], idealness of k-wise intersecting families [11], to the existence of dyadic
fractional packings in ideal clutters [9].

Even though their definition is purely combinatorial, clean tangled clutters
enjoy fascinating geometric properties, and in this paper we initiate the study of
the geometric attributes of such clutters. We prove three results that manifest
an interplay between the geometry and the combinatorics of such clutters.
In particular, full-dimensional simplices, projective geometries over the two-
element field, and an astonishing connection between them play a central role
in this work.

The core and the setcore of clean tangled clutters

Let C be a clutter over ground set V . The incidence matrix of C, denotedM(C),
is the 0− 1matrix whose columns are indexed by the elements and whose rows
are indexed by the members. Consider the primal-dual pair of linear programs

(P )
min 1>x
s.t. M(C)x ≥ 1

x ≥ 0
(D)

max 1>y
s.t. M(C)>y ≤ 0

y ≥ 0.

The incidence vector of any cover of C gives a feasible solution for (P). Thus τ(C)
is an upper bound on the optimal value of (P). A fractional packing of C is any
feasible solution y for (D), and its value is 1>y. Its support, denoted support(y),
is the clutter over ground set V whosemembers are {C ∈ C : yC > 0}. It follows
fromWeak LP Duality that every fractional packing has value at most τ(C). In
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general, this upper bound is far from being tight. However, what is fascinating
about clean clutters is that,

Theorem 4.1.3 ([7], Theorem 3 and [4], Lemma 1.6). Every clean clutter
with covering number at least two has a fractional packing of value two. In
particular, every clean tangled clutter has a fractional packing of value two.

Wemay therefore make the following definition:

Definition 4.1.4. Let C be a clean tangled clutter. Then the core of C is the
clutter

core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two}.

By Theorem 4.1.3, every clean tangled clutter has a nonempty core. Let
us identify the core for two examples of clean tangled clutters. For the first
example, consider the clean tangled clutter Q6. As

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
∈ RQ6

+ is a
fractional packing of value two, it follows that core(Q6) = Q6. For the second
example, consider the clutter Q whose incidence matrix is

M(Q) =

1 2 3 4 5 6 7 8



1
2 1 1 0 0 1 0 1 0
1
2 1 1 0 0 0 1 0 1
1
2 0 0 1 1 1 0 0 1
1
2 0 0 1 1 0 1 1 0
0 1 0 1 1 1 0 1 0
0 0 1 1 0 0 1 0 1
0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 1 1 0

Q is an ideal minimally non-packing clutter with covering number two [13],
implying in turn that it is a clean tangled clutter [5]. The row labels indicate
the unique fractional packing of value two, where uniqueness is a simple con-
sequence of Complementary Slackness. Subsequently, core(Q) consists of the
four members of Q corresponding to the top four rows ofM(Q).

Let C be a clutter over ground set V . Distinct elements u, v are duplicates in
C if the corresponding columns inM(C) are identical. To duplicate an element
w of C is to introduce a new element w̄ and replace C by the clutter over ground
set V ∪ {w̄} whose members are {C : w /∈ C ∈ C} ∪ {C ∪ {w̄} : w ∈ C ∈ C}. A
duplication of C is any clutter obtained from C after duplicating some elements.

Looking back at core(Q), we see that elements 1, 2 are duplicates and ele-
ments 3, 4 are duplicates, and that core(Q) is a duplication of Q6. In fact, the
core of any clean tangled clutter is a duplication of a cuboid – let us elaborate.

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. The cuboid of S, denoted
cuboid(S), is the clutter over ground set [2n] whose members have incidence
vectors {(p1, 1 − p1, . . . , pn, 1 − pn) : p ∈ S}. In particular, there is a bijec-
tion between the members of cuboid(S) and the points in S. Observe that
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Figure 4.2: A representation of setcore(Q6) and its convex hull.

every cuboid is obtained in this way. For example, Q6 is the cuboid of the set
{000, 110, 101, 011} ⊆ {0, 1}3, represented in Figure 4.2.

Take a point q ∈ {0, 1}n. To twist S by q is to replace S by S4q := {p4q :
p ∈ S}, where the second4 denotes coordinate-wise addition modulo 2. Take a
coordinate i ∈ [n]. Denote by ei the i

th unit vector of appropriate dimension. To
twist coordinate i of S is to replace S by S4ei. Two sets S1, S2 are isomorphic,
written as S1

∼= S2, if one is obtained from the other after relabeling and
twisting some coordinates. Two distinct coordinates i, j ∈ [n] are duplicates
in S if S ⊆ {x : xi = xj} or S ⊆ {x : xi + xj = 1}. Observe that if two
coordinates are duplicates in a set, then they are duplicates in any isomorphic
set. Observe further that S has duplicated coordinates if, and only if, cuboid(S)
has duplicated elements.

Let C be a clean tangled clutter over ground set V . Denote by G(C) the
graph over vertex set V whose edges correspond to the minimum covers of C.
It can be readily checked that G(C) is bipartite and every vertex of it is incident
with an edge [7]. The rank of C, denoted rank(C), is the number of connected
components of the bipartite graph G(C). Our first result, below, justifies this
choice of terminology.

For example, the reader can verify thatG(Q6), G(Q) are the bipartite graphs
represented in Figure 4.3, each of which has exactly three connected compo-
nents, so rank(Q6) = rank(Q) = 3.

We are ready to state our first result:

Theorem 4.1.5 (proved in §4.2). Let C be a clean tangled clutter of rank r.
Then there exists a set S ⊆ {0, 1}r such that the following statements hold:

(i) core(C) is a duplication of cuboid(S), and up to isomorphism, S is the
unique set satisfying this property.

(ii) There is a one-to-one correspondence between the fractional packings
of value two in C and the different ways to express 1

2 · 1 as a convex
combination of the points in S.

(iii) conv(S) is a full-dimensional polytope containing 1
2 · 1 in its interior.
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Figure 4.3: Left: A representation of G(Q6). Right: A representation of G(Q).

Definition 4.1.6. Let C be a clean tangled clutter of rank r. The setcore
of C, denoted setcore(C), is the unique set S ⊆ {0, 1}r such that core(C) is a
duplication of cuboid(S).

An explicit description of the setcore is provided in §4.2.
For example, we see that setcore(Q6) = setcore(Q) = {000, 110, 101, 011}.

Notice further that the convex hull of {000, 110, 101, 011} is a full-dimensional
polytope containing the point ( 12 ,

1
2 ,

1
2 ) in its interior. (See Figure 4.2.)

Simplices and projective geometries over the two-element

field

The convex hull of the setcore of any clean tangled clutter is a full-dimensional
polytope by Theorem 4.1.5 (iii). A natural geometric question arises: When is
this polytope a simplex? Surprisingly, the answer to this basic question takes
us to binary matroids. (Our terminology follows Oxley [20].)

Let k ≥ 1 be an integer, and letA be the k×(2k−1)matrixwhose columns are{
a ∈ {0, 1}k : a 6= 0

}
. The binary matroid represented byA is called the rank-k

projective geometry over GF (2) and denoted PG(k − 1, 2).1 Let n := 2k − 1.
The cycle space of PG(k − 1, 2) is

cycle(PG(k − 1, 2)) :=
{
x ∈ {0, 1}n : Ax ≡ 0 (mod 2)

}
.

Observe that the cycle space forms a vector space over GF (2). The cocycle
space of PG(k − 1, 2) is

cocycle(PG(k − 1, 2)) :=
{
A>y mod 2 : y ∈ {0, 1}k

}
⊆ {0, 1}n.

Observe that the cocycle space is the orthogonal complement of the cycle space.
As the rows of A are linearly independent over GF (2), the cocycle space has
2k = n+ 1 points. In fact, we see in §4.3 that the n+ 1 points form the vertices
of an n-dimensional simplex. Our second result, below, serves as a converse to
this statement.

1In the context of binarymatroids, rank refers toGF (2)-rank, whereas in the context of clutters,
rank refers to R-rank.



CHAPTER 4. CLEAN TANGLED CLUTTERS 56

(
1
) (

1 0 1
0 1 1

) 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


Figure 4.4: Representations of PG(0, 2), PG(1, 2) and PG(2, 2), from left to
right.

We refer to PG(k− 1, 2), k ≥ 1 simply as projective geometries. Let us look
at the first three projective geometries. For the first one, cocycle(PG(0, 1)) =
{0, 1}. As for the second one, notice that PG(1, 2) is nothing but the graphic ma-
troid of a triangle, and that cocycle(PG(1, 2)) = {000, 110, 101, 011}. The third
one, PG(2, 2), is known as the Fanomatroid. See Figure 4.4 for representations
of these three matroids.

We are now ready to state our second result:

Theorem 4.1.7 ((⇐) proved in §4.3, (⇒) proved in §4.4). Let C be a clean
tangled clutter. Then conv(setcore(C)) is a simplex if, and only if, setcore(C)
is the cocycle space of a projective geometry.

For instance, as can be seen in Figure 4.2, the convex hull of setcore(Q6) is a
simplex, so according to Theorem 4.1.7, setcore(Q6) is the cocycle space of a pro-
jective geometry. This is indeed the case as setcore(Q6) = {000, 110, 101, 011} =
cocycle(PG(1, 2)).

The clutter of the lines of the Fano plane

Consider the clutter over ground set {1, . . . , 7} whose members are

L7 :=
{
{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}

}
.

Note that the members of L7 correspond to the lines of the Fano plane, as
displayed in Figure 4.5. The members of L7 may also be viewed as the lines
(i.e. triangles) of the Fano matroid. Observe further that L7 is an identically
self-blocking clutter.

As the onlyminimally non-ideal binary clutterwith amember of cardinality
three [6], L7 plays a crucial role in Seymour’s Flowing Conjecture, predicting
an excluded minor characterization of ideal binary clutters [23].

Our third result relates to finding L7 as a minor in clean tangled clutters:

Theorem 4.1.8 (proved in §4.5). Let C be a clean tangled clutter where
conv(setcore(C)) is a simplex. If rank(C) > 3, then C has an L7 minor.

Let us outline a naive approach for proving this theorem. Though unsuc-
cessful, this attempt explains the intuition behind why Theorem 4.1.8 should
be true. Let C be a clean tangled clutter where conv(setcore(C)) is a simplex,
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Figure 4.5: The Fano plane

and rank(C) > 3. By Theorem 4.1.7, setcore(C) = cocycle(PG(k − 1, 2)) for
some k ≥ 1. As 2k − 1 = rank(C) > 3 and rank(C) = 2k − 1, we must have that
k ≥ 3. From here, the reader can verify that since PG(k − 1, 2) has the Fano
matroid as a minor, cuboid(cocycle(PG(k − 1, 2))) has an L7 minor. Conse-
quently, core(C), which is a duplication of cuboid(setcore(C)) by Theorem 4.1.5,
must have an L7 minor. However, this does not necessarily imply that C has
an L7 minor, because core(C) is only a subset of C, so minors of core(C) do not
necessarily correspond to minors of C. In §4.5, we see an elaborate, successful
attempt for proving Theorem 4.1.8.

Outline of the paper

In §4.2, we prove Theorem 4.1.5 and provide applications of the theorem used
in later sections. In §4.3, after a primer on binary matroids, we show how
every projective geometry leads to a simplex, and prove Theorem 4.1.7 (⇐) as a
consequence. In §4.4, we prove Theorem 4.1.7 (⇒), and derive an appealing
consequence on characterizing simplices that come from projective geometries.
In §4.5, after laying some ground work, we prove Theorem 4.1.8, and then
discuss an application to idealness. Finally, in §4.6, we discuss future directions
for research, and conclude with two conjectures.

4.2 The core and the setcore of clean tangled clutters

In this section, after presenting some lemmas, we prove Theorem 4.1.5, and
then provide three applications for clean tangled clutters: the first is a charac-
terization of the core, the second is an explicit description of the setcore when
the rank is small, and the third is an equivalent condition for having a simplicial
setcore.

Given a clean tangled clutter C over ground set V , recall that G(C) denotes
the graph over vertex set V whose edges correspond to the minimum covers of
C. We need the following theorem:

Theorem4.2.1 ([9]). Let C be a clean tangled clutter. ThenG(C) is a bipartite
graph where every vertex is incident with an edge. Moreover, if G(C) is
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not connected and {U,U ′} is the bipartition of a connected component, then
C \ U/U ′ is a clean tangled clutter.

Some lemmas

Let C be a clutter over ground set V . Consider the primal-dual pair of linear
programs

(P )
min 1>x
s.t.

∑
v∈C xv ≥ 1 C ∈ C

x ≥ 0

(D)
max 1>y
s.t.

∑
(yC : v ∈ C ∈ C) ≤ 1 v ∈ V

y ≥ 0.

By applying Complementary Slackness to this pair, we get the following:

Remark 4.2.2. Let C be a clutter, B a minimum cover, and y a fractional
packing of value τ(C), if there is any. Then |C ∩B| = 1 for every C ∈ C such
that yC > 0, and

∑
(yC : v ∈ C ∈ C) = 1 for every element v ∈ B.

An explicit description of the setcore. Let C be a clean tangled clutter.
Recall that

core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two}.

The following is an immediate consequence of Remark 4.2.2:

Remark 4.2.3. Let C be a clean tangled clutter over ground set V . Then every
member of core(C) is a transversal of the minimum covers of C. Moreover,
for every fractional packing y of value two and for every element v ∈ V ,∑

(yC : v ∈ C ∈ C) = 1.

Let G := G(C) and r := rank(C). By Theorem 4.2.1, G is a bipartite graph
where every vertex is incident with an edge, and it has r connected components
by definition. For each i ∈ [r], denote by {Ui, Vi} the bipartition of the ith

connected component of G. As an immediate consequence of Remark 4.2.3,

Remark 4.2.4. Let C be a clean tangled clutter of rank r, and for each i ∈ [r],
denote by {Ui, Vi} the bipartition of the ith connected component of G(C). Let
C be a member of C. If C ∈ core(C), then C ∩ (Ui ∪ Vi) ∈ {Ui, Vi} for each
i ∈ [r]. 2

In particular, core(C) is a duplication of a cuboid – let us elaborate. Consider
the setS ⊆ {0, 1}r defined as follows: startwithS = ∅, and for eachC ∈ core(C),
add a point p to S such that

pi = 0 ⇔ C ∩ (Ui ∪ Vi) = Ui ∀i ∈ [r].

2By the end of this section, we shall see that the converse of this remark also holds.
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By Remark 4.2.4, the set S is well-defined and core(C) is a duplication of
cuboid(S). Thus this must be the unique set foreseen by Theorem 4.1.5 (i),
and called the setcore of C by Definition 4.1.6. We call S the setcore of C with
respect to (U1, V1;U2, V2; . . . ;Ur, Vr), and denote it

setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr) .

(Note that we have not yet proved uniqueness, though we will see a proof
shortly.)

Fractional packings vs. convex combinations. The following remark,
which is an immediate consequence of Remark 4.2.2, sheds light on how the
hypercube center point 1

2 · 1 comes into play in Theorem 4.1.5:

Remark4.2.5. Take an integer r ≥ 1, a setS ⊆ {0, 1}r and let C := cuboid(S).
Let y ∈ RC

+ and define α ∈ RS+ as follows: for every point p ∈ S and corre-
sponding member C ∈ C, let αp := 1

2 · yC . Then y is a fractional packing of C
of value two if, and only if, 1>α = 1 and

∑
p∈S αp · p =

1
2 · 1. In particular, C

has a fractional packing of value two if, and only if, 1
2 · 1 ∈ conv(S).

Recursive construction of fractional packings. Let C be a clean tangled
clutter where G(C) is not connected, and let {U,U ′} be the bipartition of a
connected component of G(C). Let C′ := C \ U/U ′. Observe that every member
of C disjoint from U contains U ′, implying in turn that C′ = {C − U ′ : C ∈
C, C∩U = ∅}. Observe further that C′ is a clean tangled clutter by Theorem4.2.1,
so it has a fractional packing of value two by Theorem 4.1.3. These observations
are used to set up the following lemma:

Lemma 4.2.6. Let C be a clean tangled clutter, where G(C) is not connected.
Let {U,U ′} be the bipartition of a connected component of G(C), and let z, z′
be fractional packings of C \ U/U ′, C/U \ U ′ of value two, respectively. Let
y, y′ ∈ RC

+ be defined as follows:

yC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and y′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

Then 1
2y +

1
2y

′ is a fractional packing of C of value two. In particular,

core(C \ U/U ′) ⊆ core(C) \ U/U ′.

Proof. We leave this as an exercise for the reader.

Duplicated elements of the core. For the next lemma, we need the fol-
lowing remark:

Remark 4.2.7. The core of any clean tangled clutter has covering number
two.
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Lemma 4.2.8. Let C be a clean tangled clutter over ground set V . Then two
elements u, v ∈ V are duplicates in core(C) if, and only if, u, v belong to the
same part of the bipartition of a connected component of G(C).

Proof. (⇐) follows Remark 4.2.4. (⇒) By Remark 4.2.4, it suffices to show
that u, v belong to the same connected component of G := G(C). Suppose
otherwise. In particular, G is not connected. Let {U,U ′} be the bipartition
of the connected component containing u where u ∈ U ′. Then C \ U/U ′ is
a clean tangled clutter by Theorem 4.2.1. Let w be a neighbour of u in G; so
w ∈ U . Then {w, u} is a cover of C. As every member of core(C) containing u
also contains v, it follows that {w, v} is a cover of core(C), implying in turn that
core(C)\U/U ′ has {v} as a cover. However, core(C \ U/U ′) ⊆ core(C)\U/U ′ by
Lemma 4.2.6, so core(C \ U/U ′) has a cover of cardinality one, a contradiction
to Remark 4.2.7.

Proof of Theorem 4.1.5

Let C be a clean tangled clutter over ground set V , let G := G(C), and let
r := rank(C). Recall that r is the number of connected components of G. For
each i ∈ [r], let {Ui, Vi} be the bipartition of the ith connected component of G.
Let S := setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). We claim that S satisfies (i)-(iii)
of Theorem 4.1.5, thereby finishing the proof. It follows from the construction
of S that core(C) is a duplication of cuboid(S). Moreover, by Lemma 4.2.8, S is
the unique set satisfying this property, up to isomorphism. Thus, (i) holds. (ii)
Every fractional packing of value two in C corresponds to a fractional packing
of value two in core(C), and every fractional packing of value two in core(C)
corresponds to a fractional packing of value two in cuboid(S). By Remark 4.2.5,
the fractional packings of value two in cuboid(S) are in correspondence with
the different ways to express 1

2 · 1 as a convex combination of the points in S.
These observations prove (ii).

Claim 1. 1
2 · 1 ∈ conv(S).

Proof of Claim. By Theorem 4.1.3, C and therefore core(C) has a fractional
packing of value two, implying that cuboid(S) has a fractional packing of value
two. It therefore follows from Remark 4.2.5 that 1

2 · 1 can be expressed as a
convex combination of the points in S, thereby proving the claim. ♦

Claim 2. 1
2 · 1± 1

2 · ei ∈ conv(S) for each i ∈ [r].

Proof of Claim. When r = 1, note that Claim 1 implies that S = {0, 1}, so
Claim 2 holds. Now assume r ≥ 2. Let C′ := C \Ui/Vi. Then C′ is a clean tangled
clutter by Theorem 4.2.1, and core(C′) ⊆ core(C) \ Ui/Vi by Lemma 4.2.6. Let
z be a fractional packing of C′ of value two. Then by Remark 4.2.3,∑

(zC′ : v ∈ C ′ ∈ C′) = 1 ∀ v ∈ V − (Ui ∪ Vi).
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Define y ∈ RC
+ as follows:

yC :=

{
zC−Vi

if C ∩ Ui = ∅
0 otherwise.

Notice that

1>y = 2∑
(yC : v ∈ C ∈ C) = 1 ∀ v ∈ V − (Ui ∪ Vi)∑
(yC : v ∈ C ∈ C) = 2 ∀ v ∈ Vi∑
(yC : v ∈ C ∈ C) = 0 ∀ v ∈ Ui.

As support(z) ⊆ core(C′) ⊆ core(C)\Ui/Vi, it follows that support(y) ⊆ core(C).
Define α ∈ RS+ as follows: for every point p ∈ S and corresponding member

C ∈ core(C), let αp := 1
2 · yC . Then the equalities above show that 1>α = 1 and∑

p∈S αp · p = 1
2 · 1+ 1

2 · ei. In particular, 1
2 · 1+ 1

2 · ei ∈ conv(S). Repeating

the argument on C/Ui \ Vi yields 1
2 · 1− 1

2 · ei ∈ conv(S), thereby proving the
claim. ♦

Claims 1 and 2 together imply that conv(S) is a full-dimensional polytope
containing 1

2 · 1 in its interior, so (iii) holds. This finishes the proof of Theo-
rem 4.1.5.

Applications

As the first application of Theorem 4.1.5, we give the following characterization
of the core of a clean tangled clutter. Note that this result is the converse of
Remark 4.2.4.

Theorem4.2.9. Let C be a clean tangled clutter of rank r, and for each i ∈ [r],
denote by {Ui, Vi} the bipartition of the ith connected component ofG(C). Then

core(C) = {C ∈ C : C ∩ (Ui ∪ Vi) = Ui or Vi ∀ i ∈ [r]}.

Proof. Denote by C′ the clutter on the right-hand side. Let

S := setcore(C : U1, V1; . . . ;Ur, Vr) .

Let S′ be the subset of {0, 1}r defined as follows: start with S′ = ∅, and for each
C ∈ C′, add a point p to S′ such that

pi = 0 ⇔ C ∩ (Ui ∪ Vi) = Ui ∀ i ∈ [r].

By Remark 4.2.4,
core(C) ⊆ C′

so S ⊆ S′. We know from Theorem 4.1.5 (iii) that 1
2 · 1 lies in the interior of

conv(S), so 1
2 · 1 lies in the interior of conv(S′). As a result, for every p ∈ S′,
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1
2 · 1 can be written as a convex combination of the points in S′ such that the
coefficient of p is nonzero. That is, by Remark 4.2.5, for each C ∈ C′, there is a
fractional packing of C′ whose support includes C. As every fractional packing
of C′ is also a fractional packing of C, it follows that

C′ ⊆ core(C)

thereby finishing the proof of Theorem 4.2.9.

For the next application, we give an explicit description of the setcore when
the rank is small:

Theorem 4.2.10. Let C be a clean tangled clutter with rank r. For each
i ∈ [r], denote by {Ui, Vi} the bipartition of the ith connected component of
G(C). Then the following statements hold:

(i) If r = 1, then setcore(C) = {0, 1}, and so core(C) = {U1, V1}.

(ii) If r = 2, then setcore(C) = {00, 10, 01, 11}, and so core(C) = {U1∪U2, U1∪
V2, V1 ∪ U2, V1 ∪ V2}.

(iii) If r = 3 and C does not have disjoint members, then

setcore(C) = {000, 110, 101, 011} or {100, 010, 001, 111}

and so

core(C) ={U1 ∪ U2 ∪ U3, U1 ∪ V2 ∪ V3, V1 ∪ U2 ∪ V3, V1 ∪ V2 ∪ U3}
or {U1 ∪ U2 ∪ V3, U1 ∪ V2 ∪ U3, V1 ∪ U2 ∪ U3, V1 ∪ V2 ∪ V3}

Proof. Let S := setcore(C) ⊆ {0, 1}r. By Theorem 4.1.5 (iii), 1
2 · 1 lies in the

interior of conv(S). This immediately (i) and (ii). If C does not have disjoint
members, then neither does core(C), implying that S does not have antipodal
points. These two facts imply (iii).

Finally, Theorem 4.1.5 allows us to restate the assumption that the setcore of
a clean tangled clutter has a simplicial convex hull. This restatement is crucial
for the proof of Theorem 4.1.7.

Theorem 4.2.11. Let C be a clean tangled clutter. Then conv(setcore(C)) is a
simplex if, and only if, C has a unique fractional packing of value two.

Proof. Let S := setcore(C). Theorem 4.1.5 (ii) states that there is a one-to-
one correspondence between the fractional packings of value two in C and the
different ways to describe 1

2 · 1 as a convex combination of the points in S. As a
consequence, C has a unique fractional packing of value two if, and only if, 1

2 · 1
can be written as a unique combination of the points in S. Since 1

2 · 1 lies in the
interior of conv(S) by Theorem 4.1.5 (iii), the theorem follows.
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4.3 From projective geometries to simplices

In this section, we show that the cocycle space of every projective geometry
forms a simplex, and then prove Theorem 4.1.7 (⇐) as an immediate conse-
quence.

A primer on binary spaces and binary matroids

Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. We say that S is an affine vector
space overGF (2), or simply an affine binary space, if a4b4c ∈ S for all points
a, b, c ∈ S. If S contains 0, then S is called a binary space. Binary spaces enjoy
the following transitive property:

Remark 4.3.1. S = S4a for every binary space S and every point a ∈ S.

Suppose S is a binary space. By Basic Linear Algebra, there is a 0− 1matrix
A with n columns such that S = {x : Ax ≡ 0 (mod 2)}. LetM be the binary
matroid over ground setEM := [n] that is represented byA. The cycle space of
M is the set cycle(M) := S and the cocycle space ofM , denoted cocycle(M) ⊆
{0, 1}n, is the row space of A over GF (2). Notice that cycle(M) , cocycle(M)
are binary spaces that are orthogonal complements. Observe that the binary
matroidM can be fully determined by either A, its cycle space or its cocycle
space.

A cycle ofM is a subset C ⊆ EM such that χC ∈ cycle(M), and a cocycle
of M is a subset D ⊆ EM such that χD ∈ cocycle(M). In particular, ∅ is
both a cycle and a cocycle. Notice that every cycle and every cocycle have an
even number of elements in common. A circuit ofM is a nonempty cycle that
does not contain another nonempty cycle, and a cocircuit ofM is a nonempty
cocycle that does not contain another nonempty cocycle. It is well-known that
every cycle is either empty or the disjoint union of some circuits, and that every
cocycle is either empty or the disjoint union of some cocircuits [20]. Observe
that the cycles, circuits, cocycles, and cocircuits ofM correspond respectively
to the cocycles, cocircuits, cycles, and circuits of the dual matroidM?.

An element e ∈ EM is a loop ofM if {e} is a circuit, and it is a coloop of
M if {e} is a cocircuit. Two distinct elements e, f ∈ EM are parallel inM if
{e, f} is a circuit. M is a simple binary matroid if it has no loops and no parallel
elements, i.e. if every circuit has cardinality at least three. A triangle inM is a
circuit of cardinality three.

Remark 4.3.2. Take an integer n ≥ 1 and a binary space S ⊆ {0, 1}n, and
letM be the binarymatroid whose cycle space is S. Then the points in S do not
agree on a coordinate if, and only if,M has no coloops. Moreover, if the points
in S do not agree on a coordinate, then |S ∩ {x : xi = 0}| = |S ∩ {x : xi = 1}|
for all i ∈ [n].
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Proof of Theorem 4.1.7 (⇐)

Take an integer k ≥ 1, and letA be the k×(2k−1)matrix whose columns are all
the distinct 0−1 vectors of dimension k that are nonzero. Recall thatPG(k−1, 2)
is the binary matroid represented by A, cycle(PG(k − 1, 2)) = {x : Ax ≡ 0
(mod 2)} and cocycle(PG(k − 1, 2)) is the row space ofA generated overGF (2).
Recall further that |cocycle(PG(k − 1, 2)) | = 2k. As A has no zero column, and
no two columns of it are equal, PG(k − 1, 2) is a simple binary matroid. In
particular, the points in cocycle(PG(k − 1, 2)) do not agree on a coordinate by
Remark 4.3.2.

Proposition 4.3.3. Take an integer k ≥ 2. Then the following statements
hold for PG(k − 1, 2):

(i) every nonempty cocycle has cardinality 2k−1,

(ii) every two elements appear together in a triangle,

(iii) every cycle is the symmetric difference of some triangles.

Proof. (i) Let D be a nonempty cocycle. Then χD is nonzero and belongs to
cocycle(PG(k − 1, 2)). Let A′ be a k × (2k − 1)matrix with 0− 1 entries whose
first row is χD and whose rows form a basis for cocycle(PG(k − 1, 2)) over
GF (2). Notice that the orthogonal complement of cocycle(PG(k − 1, 2)) over
GF (2) is equal to

cycle(PG(k − 1, 2)) = {x : A′x ≡ 0 (mod 2)}.

As PG(k−1, 2) is a simple binarymatroid, it follows thatA′ has no zero column,
and no two columns of it are equal. As A′ has 2k − 1 columns and k rows, it
follows that the columns of A′ are all the 0− 1 vectors of dimension k that are
nonzero. In particular, every row of A′ has 2k−1 ones and 2k−1 − 1 zeros. In
particular, |D| = 2k−1.

(ii) Let A be the k × (2k − 1)matrix representation of PG(k − 1, 2) whose
columns are all the 0− 1 vectors of dimension k that are nonzero. Pick distinct
elements e, f of PG(k − 1, 2), and let a, b be the corresponding columns of A.
Notice that a+b (mod 2) is another column ofA, and let g be the corresponding
element of PG(k − 1, 2). Then {e, f, g} is the desired triangle of PG(k − 1, 2).

(iii) Let C be a nonempty cycle. We proceed by induction on |C| ≥ 3. The
base |C| = 3 holds trivially. For the induction step assume that |C| ≥ 4. Pick
distinct elements e, f ∈ C. By (ii) there is an element g such that {e, f, g} is a
triangle. SinceC4{e, f, g} is a cycle of smaller cardinality thanC, the induction
hypothesis applies and tell us that C4{e, f, g} is the symmetric difference of
some triangles, implying in turn that C is the symmetric difference of some
triangles, thereby completing the induction step.

We are now ready to present the key result of this subsection:
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Theorem 4.3.4. Take an integer k ≥ 1 and let S := cocycle(PG(k − 1, 2)).
Then conv(S) is a full-dimensional simplex containing 1

2 · 1 in its interior. In
particular, 1

2k−1 · 1 is the unique fractional packing of cuboid(S) of value two.

Proof. Let n := 2k − 1. We know that S is a subset of {0, 1}n and has exactly
n+ 1 points. It follows from Proposition 4.3.3 (i) that the inequality

n∑
i=1

xi ≤
n+ 1

2

is valid for conv(S), and that every point in S except for 0 satisfies this in-
equality at equality. As S is a binary space, S4p = S for every point p ∈ S
by Remark 4.3.1. This transitive property implies that for each p ∈ S, the
transformed inequality∑

i:pi=0

xi +
∑
j:pj=1

(1− xj) ≤
n+ 1

2

is also valid for conv(S), and every point in S except for p satisfies this inequality
at equality. Hence, conv(S) is an n-dimensional simplex whose n+ 1 facets are
as described above.

As the point 1
2 · 1 satisfies every inequality strictly, it lies in the interior of

conv(S). In fact, asS is a binary spacewhose points do not agree on a coordinate,
|S ∩ {x : xi = 0}| = |S ∩ {x : xi = 1}| for each i ∈ [n] by Remark 4.3.2, so∑

p∈S

1

n+ 1
· p = 1

2
· 1.

As conv(S) is a simplex, it follows from Remark 4.2.5 that 2
n+1 · 1 = 1

2k−1 · 1 is
the unique fractional packing of cuboid(S) of value two, thereby finishing the
proof of Theorem 4.3.4.

As a consequence,

Proof of Theorem 4.1.7 (⇐). Let C be a clean tangled clutter. If setcore(C) is
the cocycle space of a projective geometry, then Theorem 4.3.4 implies that
conv(setcore(C)) is a simplex, as required.

4.4 From simplices to projective geometries

In this section, after presenting a lemma on constructing projective geome-
tries, we prove Theorem 4.1.7 (⇒), and then present an appealing consequence
characterizing when a simplex comes from a projective geometry.

We start with the following key lemma allowing for an inductive argument:
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Lemma 4.4.1. Let C be a clean tangled clutter with a unique fractional
packing of value two. Suppose G(C) is not connected, and let {U,U ′} be the
bipartition of some connected component of G(C). Then C \ U/U ′ is a clean
tangled clutter with a unique fractional packing of value two. Moreover, if
y, z are the fractional packings of C, C \ U/U ′ of value two, respectively, then
support(z) = support(y) \ U/U ′.

Proof. By Theorem 4.2.1, C \ U/U ′ and C/U \ U ′ are clean tangled clutters, so
we may apply Theorem 4.1.3 and conclude that they have fractional packings
z, z′ of value two, respectively. Let t, t′ ∈ RC

+ be defined as follows:

tC :=

{
zC−U ′ if C ∩ U = ∅
0 otherwise

and t′C :=

{
z′C−U if C ∩ U ′ = ∅
0 otherwise.

By Lemma 4.2.6, 1
2 t+

1
2 t

′ is a fractional packing of C of value two. It therefore
follows from the uniqueness assumption that 1

2 t +
1
2 t

′ = y. Subsequently, z
must be the unique fractional packing of C \ U/U ′ of value two, z′ must be the
unique fractional packing of C/U \ U ′ of value two, and

support(z) = support(y) \ U/U ′

support(z′) = support(y)/U \ U ′,

as desired.

Constructing projective geometries

For an integer r ≥ 1 and a set S ⊆ {0, 1}r, the incidence matrix of S is the
matrix whose rows are the points in S. Denote by J the all-ones matrix of
appropriate dimensions. Take an integer k ≥ 1 and let A be the incidence
matrix of cocycle(PG(k − 1, 2)). Then every column of A has 2k−1 ones and
2k−1 zeros. In fact, A has the following recursive description:

Remark 4.4.2. Take an integer k ≥ 2. If A′ is the incidence matrix of
cocycle(PG(k − 2, 2)), then up to permuting rows and columns,(

1 A′ J −A′

0 A′ A′

)
is the incidence matrix of cocycle(PG(k − 1, 2)). Moreover, every element of
PG(k−1, 2) can be used as the left-most column in the incidence matrix above.

Consequently, for every pair a, b of columns of A,

|{j : aj = bj = 0}| = |{j : aj = bj = 1}|
= |{j : aj = 1, bj = 0}|
= |{j : aj = 0, bj = 1}|
= 2k−2.
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Two columns of a 0− 1matrix are complementary if they add up to the all-ones
vector. If C is the cuboid of cocycle(PG(k − 1, 2)), then every column ofM(C)
has 2k−1 ones, and by the expressions above, every pair of columns ofM(C) are
either complementary or have exactly 2k−2 ones in common.

Remark 4.4.3. Take an integer k ≥ 2, and let

C := cuboid(cocycle(PG(k − 1, 2))).

Then for every minimum cover {u, v} of C, the minor C \ u/v is obtained from
cuboid(cocycle(PG(k − 2, 2))) after duplicating every element once.

This remark is an immediate consequence of Remark 4.4.2, and is helpful
to keep in mind when parsing the hypotheses of the following lemma, which is
the main result of this section:

Lemma 4.4.4. Take an integer r ≥ 2 and a clutter C whose ground set V is
partitioned into nonempty parts U1, V1, . . . , Ur, Vr such that

• the elements in each part are duplicates,

• for each i ∈ [r], if u ∈ Ui and v ∈ Vi, then {u, v} is a transversal of C, and

• for each i ∈ [r], C \ Ui/Vi (resp. C/Ui \ Vi) is a duplication of the cuboid
of the cocycle space of a projective geometry.

Assume further that C has exactly r + 1 members and a unique fractional
packing of value two. Then there is an integer k ≥ 2 such that r = 2k − 1 and
C is a duplication of cuboid(cocycle(PG(k − 1, 2))).

Proof. We may assume after contracting some duplicate elements that Ui =
{ui} and Vi = {vi} for each i ∈ [r]. In particular, C is a cuboid. As C has a
fractional packing of value two, it follows that τ(C) ≥ 2, so C is a tangled clutter.
For each i ∈ [r], let f(ui) := vi and f(vi) := ui.

Claim 1. C does not have duplicated elements. In particular, if {u, v} is a
transversal of C, then v = f(u).

Proof of Claim. Suppose for a contradiction that u, u′ are duplicates. Since
τ(C) = 2, {u, u′} is not a cover, so u′ 6= f(u). But then C \ f(u)/u has {u′} as a
cover, a contradiction as C \ f(u)/u is a duplication of the cuboid of the cocycle
space of a projective geometry. ♦

In what follows the reader should keep in mind that our labeling of the
columns ofM(C) induces a labeling for the columns ofM(C \ f(u)/u), for each
u ∈ V . In particular,M(C \ f(u)/u) andM(C/f(u) \ u) have the same column
labels, for each u ∈ V .

Claim 2. There is an integer k ≥ 2 such that the following statements hold:

(1) for each u ∈ V , C\f(u)/u is a duplication of cuboid(cocycle(PG(k − 2, 2))),
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(2) |C| = 2k,

(3) every column ofM(C) has exactly 2k−1 ones,

(4) every pair of columns ofM(C) are either complementary or have exactly
2k−2 ones in common.

Proof of Claim. For each u ∈ V , C \ f(u)/u is a duplication of

cuboid(cocycle(PG(ku − 2, 2)))

for some integer ku ≥ 2. In particular, every column u of M(C) has exactly
2ku−1 = |cocycle(PG(ku − 2, 2)) | ones. Notice now that if u ∈ V and w ∈
V − {u, f(u)}, then the number of ones in column w ofM(C) is equal to the
sum of the number of ones in column w ofM(C \ f(u)/u) and the number of
ones in column w ofM(C/f(u) \ u), so

2kw−1 = 2ku−2 + 2kf(u)−2

implying in turn that kw = ku = kf(u). As a result, (ku : u ∈ V ) are all equal to
k for some integer k ≥ 2. It can be readily checked that (1)-(4) hold for k, as
required. ♦

Following up onClaim 2 (4), if a pair of columns ofM(C) are complementary,
then by Claim 1, the column labels must be u, f(u) for some u ∈ V .

Claim 3. 1
2k−1 · 1 ∈ RC is the unique fractional packing of C of value two.

Proof of Claim. This follows from Claim 2 (2)-(3) and our assumption that C
has a unique fractional packing of value two. ♦

Claim 4. The following statements hold for every u ∈ V :

(1) a pair of identical columns in the matrixM(C \ f(u)/u) correspond to a
complementary pair of columns in the matrixM(C/f(u) \ u),

(2) M(C \ f(u)/u) does not have three identical columns,

(3) r = 2k − 1, and

(4) C \f(u)/u is obtained from cuboid(cocycle(PG(k − 2, 2))) after duplicat-
ing every element exactly once.

Proof of Claim. (1) follows from Claim 2 (4). (2) follows from (1). (3) follows
from Claim 2 (2) and our assumption that |C| = r+ 1. (4) Claim 2 (1), together
with part (2) of this claim, implies that the minor C \ f(u)/u is obtained from
cuboid(cocycle(PG(k − 2, 2))) after duplicating every element at most once. In
particular,

2r = |V | ≤ 2 + 2 · 2 · (2k−1 − 1) = 2 · (2k − 1).

However, r = 2k − 1 by part (3) of this claim, so equality must hold throughout
the above inequalities, thereby proving (4). ♦



CHAPTER 4. CLEAN TANGLED CLUTTERS 69

Pick S ⊆ {0, 1}r containing 0 such that C = cuboid(S). We prove that
S = cocycle(PG(k − 1, 2)). Denote by A the incidence matrix of S. Notice that
A is a column submatrix ofM(C), and the column labels of A form a subset of
V and a transversal of {{u, f(u)} : u ∈ V }.

Claim 5. In A the sum of every two columns modulo 2 is equal to another
column.

Proof of Claim. Pick two columns of A with column labels u,w ∈ V . By
Claim 4 (4), inM(C \ f(u)/u), column w is identical to another column v. No-
tice that v ∈ V − {u, f(u), w, f(w)}. By Claim 4 (1), inM(C/f(u) \ u), columns
w, v are complementary. Thus, inM(C), columns u,w, v add up to 1modulo 2,
implying in turn that columns u,w, f(v) add up to 0modulo 2. We know that
columns u,w ofM(C) are also present inA, and that exactly one of the columns
v, f(v) ofM(C) is present in A. As 0 ∈ S, A has a zero row, so no three of its
columns can add up to 1modulo 2, implying in turn that f(v)must be a column
of A instead of v. As a result, in A, columns u,w add up to column f(v)modulo
2, as required. ♦

We next use Remark 4.4.2 to argue that up to permuting rows and columns,
A is the incidence matrix of cocycle(PG(k − 1, 2)). To this end, denote by
v0 ∈ V the label of the first column of A. For j ∈ {0, 1}, denote by Ij the rows
of A corresponding to {x ∈ S : xv0 = j}. By Claim 2 (3), |I0| = |I1| = 2k−1.
Notice that r−1

2 = 2k−1 − 1 by Claim 4 (3). Label the columns of A other than
v0 as v1, u1, v2, u2, . . . , v r−1

2
, u r−1

2
where for each i ∈

[
r−1
2

]
, the sum of columns

v0 and vi modulo 2 is equal to column ui – such a labeling exists because of
Claim 5. Define matrices A1, A2, A3, A4:

• A1 is the I1 × {v1, . . . , v r−1
2
} submatrix of A,

• A2 is the I1 × {u1, . . . , u r−1
2
} submatrix of A,

• A3 is the I0 × {v1, . . . , v r−1
2
} submatrix of A,

• A4 is the I0 × {u1, . . . , u r−1
2
} submatrix of A.

Then A3 = A4 and A1 +A2 = J . After swapping the labels vi and ui, i ∈
[
r−1
2

]
,

if necessary, wemay assume thatA1 has a zero row. Notice further that as 0 ∈ S
and A3 = A4, the matrix A3 also has a zero row. As a result, by Claim 4 (4), up
to permuting rows and columns, the following three matrices are equal: A1, A3,
and the incidence matrix of cocycle(PG(k − 2, 2)).

For the rest of the proof, we work with the projective geometry PG(k − 2, 2)
whose labeling agrees with the column labels of A3, that is, the cocycles of the
labeled PG(k − 2, 2) are the rows of A3.

Claim 6. Up to permuting rows, A1 and A3 are equal.
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Proof of Claim. This is obviously true if k = 2. We may therefore assume that
k ≥ 3. It suffices to show that every row of A1 is equal to some row of A3,
because the two matrices are already equal up to permuting rows and columns.
Pick a row χD of A1 for someD ⊆ {v1, . . . , v r−1

2
}. We need to show thatD is a

cocycle of (the labeled) PG(k− 2, 2). Pick a triangle {vi, vj , vk} of PG(k− 2, 2),
that is, the corresponding columns of A3 add up to zero modulo 2. Consider
now the columns vi, vj of A. By Claim 5, the sum of these two columns modulo
2 is another column ofA. This column is either vk or uk, and in fact sinceA1 has
a zero row, it must be vk. As a result, columns vi, vj , vk ofA1 also add up to zero
modulo 2, implying in turn that |D∩{vi, vj , vk}| is even. Thus,D intersects every
triangle of PG(k − 2, 2) an even number of times, so by Proposition 4.3.3 (iii),
D intersects every cycle of PG(k − 2, 2) an even number of times, implying in
turn thatD is a cocycle of PG(k − 2, 2), as required. ♦

Wemay therefore assume thatA1 = A3, implying in turn thatA1 = A3 = A4

and A2 = J −A1. As A1 is the incidence matrix of cocycle(PG(k − 2, 2)), it fol-
lows from Remark 4.4.2 thatA is the incidence matrix of cocycle(PG(k − 1, 2)),
so S = cocycle(PG(k − 1, 2)). As C = cuboid(S), and as r = 2k − 1 by
Claim 4 (3), we have finished the proof of Lemma 4.4.4.

It is worth pointing out that the assumption |C| = r + 1 in Lemma 4.4.4 can
be removed without affecting the conclusion, but this comes at the expense of a
much longer proof of Claim 4, parts (3) and (4), one that requires the notion of
binary clutters.

Proof of Theorem 4.1.7 (⇒)

Let C be a clean tangled clutter over ground set V whose setcore has a simplicial
convex hull. By Theorem 4.2.11, C has a unique fractional packing y of value
two. We shall prove by induction on |V | ≥ 2 that

(?) there is an integer k ≥ 1 such that y is 1
2k−1 -integral, rank(C) =

2k − 1 and support(y) is a duplication of

cuboid(cocycle(PG(k − 1, 2))).

For the base case |V | = 2, as C is tangled, it must consist of two members of size
one each, so (?) holds for k = 1. For the induction step, assume that |V | ≥ 3.
Let r := rank(C) and S := setcore(C) ⊆ {0, 1}r. By Theorem 4.1.5 (iii) and
our assumption, conv(S) is a full-dimensional simplex, implying in turn that
|S| = r + 1. Let G := G(C), and for each i ∈ [r], let {Ui, Vi} be the bipartition
of the ith connected component of G. As support(y) ⊆ core(C), Remark 4.2.4
implies Claim 1 below:

Claim 1. For each C ∈ support(y) and i ∈ [r], C ∩ (Ui ∪ Vi) is either Ui or Vi.

Claim 2. If r = 1, then (?) holds for k = 1.
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Proof of Claim. Assume that r = 1. Then support(y) ⊆ {U1, V1} by Claim 1,
and as support(y) contains a fractional packing of C of value two, we must have
that support(y) = {U1, V1}, and the claim follows. ♦

Wemay therefore assume that r ≥ 2.

Claim 3. The following statements hold:

(1) |support(y)| = r + 1,

(2) support(y) has a unique fractional packing of value two,

(3) the elements in each of U1, V1, . . . , Ur, Vr are duplicates in support(y),

(4) for each i ∈ [r], if u ∈ Ui and v ∈ Vi, then {u, v} is a transversal of
support(y), and

(5) for each i ∈ [r], support(y)\Ui/Vi (resp. support(y)/Ui\Vi) is a duplication
of the cuboid of the cocycle space of a projective geometry.

Proof of Claim. (1) Since y is the unique fractional packing of C of value two,
we have core(C) = support(y). Subsequently, |support(y)| = |core(C) | = |S| =
r+1. (2) is obvious, and (3) and (4) follow from Claim 1. (5) By Lemma 4.4.1,
the minor C \ Ui/Vi is a clean tangled clutter with a unique fractional packing z
of value two, and support(z) = support(y) \ Ui/Vi. Our induction hypothesis
applied to C\Ui/Vi implies that support(z), which is equal to support(y)\Ui/Vi,
is a duplication of the cuboid of the cocycle space of a projective geometry, as
required. ♦

We may therefore apply Lemma 4.4.4 to support(y) to conclude that for
some integer k ≥ 2, r = 2k − 1 and support(y) is a duplication of

cuboid(cocycle(PG(k − 1, 2))).

It follows from Theorem 4.3.4 that y assigns 1
2k−1 to the members of support(y),

so (?) holds. This completes the induction step.
We have shown that (?) holds. As a consequence, core(C) = support(y) is a

duplication of the cuboid of cocycle(PG(k − 1, 2)) ⊆ {0, 1}r. The uniqueness of
the setcore (Theorem 4.1.5 (i)) implies that setcore(C) = cocycle(PG(k − 1, 2)),
thereby finishing the proof of Theorem 4.1.7 (⇒).

Binary clutters and an application

A clutter C is binary if the symmetric difference of any three members contains
a member [18]. Observe that if a clutter is binary, then so is every duplication of
it. It is known that C is a binary clutter if, and only if, |C ∩B| ≡ 1 (mod 2) for
allC ∈ C, B ∈ b(C) [18]. In particular, a clutter is binary if and only if its blocker
is binary. Observe that the deltas, extended odd holes and their blockers are
not binary. If a clutter is binary, so is every minor of it [22]. Subsequently,
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Remark 4.4.5. Every binary clutter is clean.

Examples include the clutter of minimal T -joins of a graft, and the clutter
of odd circuits of a signed graph (the ground set in each case is the edge set of
the underlying graph) [12]. Another class of binary clutters comes from affine
binary spaces.

Remark 4.4.6. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n. Then S is an
affine binary space if, and only if, cuboid(S) is a binary clutter.

We are now ready to prove the following appealing consequence of Theo-
rem 4.1.7:

Theorem 4.4.7. Take an integer n ≥ 1 and a set S ⊆ {0, 1}n whose convex
hull is a simplex containing 1

2 · 1 in its relative interior. Then exactly one of
the following statements holds:

• cuboid(S) has a delta or the blocker of an extended odd hole minor, or

• S is a duplication of the cocycle space of a projective geometry over the
two-element field.

Proof. Let C := cuboid(S). If S is a duplication of the cocycle space of a projec-
tive geometry, then up to twisting, S is a binary space, so C is a binary clutter
by Remark 4.4.6, implying in turn that it is clean by Remark 4.4.5. Conversely,
assume that C is clean. As conv(S) is a simplex containing 1

2 · 1 in its relative
interior,

• the points in S do not all agree on a coordinate, so C is tangled, and

• by Remark 4.2.5 on the connection between conv(S) and fractional pack-
ings of C, C must have a unique fractional packing of value two, one whose
support is C.

In particular, C = core(C), so S is a duplication of setcore(C). As conv(S) is a
simplex, so is conv(setcore(C)), so by Theorem 4.1.7, setcore(C) is isomorphic
to the cocycle space of a projective geometry, implying in turn that S is a
duplication of the cocycle space of a projective geometry, as required.

4.5 Finding the Fano plane as a minor

In this section, after presenting a few ingredients, we prove Theorem 4.1.8, and
then prove a consequence of the result.
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Monochromatic covers in clean tangled clutters

Let C be a clean tangled clutter. A cover ismonochromatic if it ismonochromatic
in some (proper) bicoloring of the bipartite graph G(C). In this subsection, we
prove a lemma onmonochromatic minimal covers in clean tangled clutters. We
need the following result from Mathematical Logic:

Proposition 4.5.1 ([21]). Take an integer r ≥ 1 and a set S ⊆ {0, 1}r.
Pick disjoint subsets I, J ⊆ [r] and disjoint subsets I ′, J ′ ⊆ [r] such that the
following inequalities are valid S:∑

i∈I
xi +

∑
j∈J

(1− xj) ≥ 1

∑
i∈I′

xi +
∑
j∈J′

(1− xj) ≥ 1

If k ∈ I ∩ J ′, then the following inequality is also valid for S:∑
i∈(I∪I′)−{k}

xi +
∑

j∈(J∪J′)−{k}

(1− xj) ≥ 1.

Proof. We leave the proof as an exercise for the reader.

Proposition 4.5.1 is known as the Resolution Principle and the derived
inequality is referred to as the resolvent of the other two inequalities. We use
this remark to prove the following, a key ingredient needed for the proof of
Theorem 4.1.8.

Theorem 4.5.2. Let C be a clean tangled clutter over ground set V of rank
r, and for each i ∈ [r], denote by {Ui, Vi} the bipartition of the ith connected
component of G := G(C). Suppose for some integer k ∈ [r] that V1 ∪ · · · ∪ Vk
is a cover of C. Then k ≥ 3. Moreover, if k = 3, then V1 ∪ V2 ∪ V3 contains
a minimal cover of cardinality three picking exactly one element from each
Vi, i ∈ [3].

Proof. Let S := setcore(C : U1, V1;U2, V2; . . . ;Ur, Vr). Since V1 ∪ · · · ∪ Vk is a
cover of C, it is also a cover of core(C), so every member of core(C) contains
at least one of V1, . . . , Vk, by Remark 4.2.4. In particular, the inequality x1 +
· · · + xk ≥ 1 is valid for conv(S). As 1

2 · 1 lies in the interior of conv(S) by
Theorem 4.1.5 (iii), it follows that k ≥ 3.

Assume that k = 3. Let B be a minimum cardinality cover contained in
V1 ∪ V2 ∪ V3. What we just showed implies that B ∩ Vi 6= ∅ for i ∈ [3]. We claim
that |B∩Vi| = 1 for each i ∈ [3], thereby finishing the proof. Suppose otherwise.
We may assume that |B ∩ V3| ≥ 2. Let I := B − V3, J := V − (I ∪U3 ∪ V3), and
C′ := C \ I/J . Note that C′ is a clean clutter and has ground set U3 ∪ V3. Notice
further that every edge of G[U3 ∪ V3] gives a cardinality-two cover of C′.

Case 1: τ(C′) = 2. In this case, C′ is a tangled clutter whereG[U3 ∪V3] ⊆ G(C′).
In particular, G(C′) is a connected bipartite graph whose bipartition inevitably
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is {U3, V3}. Thus, rank(C′) = 1, so core(C′) = {U3, V3} by Theorem 4.2.10 (i).
However, as B is a cover of C, B − I = B ∩ V3 is a cover of C′, a contradiction
as B ∩ V3 is disjoint from U3 ∈ core(C′) ⊆ C′.

Case 2: τ(C′) ≤ 1. That is, there is a minimal coverD of C such thatD ∩ J = ∅
and |D − I| ≤ 1. AsD ∩ I ⊆ I = B − V3 ( B, and B is a minimal cover of C, it
follows thatD ∩ I is not a cover of C, soD − I 6= ∅. Thus, |D − I| = 1. Let u be
the element inD − I ⊆ U3 ∪ V3.

Case 2.1: u ∈ U3. In this case, V1 ∪ V2 ∪ U3 is a cover of C, implying that the
inequality x1 + x2 + (1− x3) ≥ 1 is valid for S. However, V1 ∪ V2 ∪ V3 is also a
cover of C, so x1 + x2 + x3 ≥ 1 is valid for S, too. By applying the Resolution
Principle, Proposition 4.5.1, we get that x1+x2 ≥ 1 is also valid for S. However,
1
2 · 1 lies in the interior of conv(S) by Theorem 4.1.5 (iii), a contradiction.

Case 2.2: u ∈ V3. In this case,

|D| = |D ∩ I|+ |D − I| = |B − V3|+ 1 < |B − V3|+ |B ∩ V3| = |B|,

where the strict inequality follows from our contrary assumption that |B∩V3| ≥
2. However, |D| < |B| contradicts our minimal choice of B as the minimum
cover of C contained in V1 ∪ V2 ∪ V3.

We obtained a contradiction in each case, as desired.

A lemma for finding an L7 minor

Recall that

L7 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}}

and b(L7) = L7. This clutter enjoys a lot of symmetries. L7 has an automor-
phism mapping every element to every other element, and an automorphism
mapping every member to every other member. These facts are crucial through-
out this subsection.

Remark 4.5.3. Let G = (V,E) be a connected, bipartite graph with biparti-
tion {U,U ′}where U,U ′ 6= ∅. Assume that there exists a subsetX ⊆ U ′ such
that 2 ≤ |X| ≤ 3, and there is no proper vertex-induced subgraph that is
connected and containsX. Then G is a tree whose leaves are inX.

Proof. By our minimality assumption, every vertex in V − X is a cut-vertex
of G separating at least two vertices inX. We claim that G is a tree. Suppose
otherwise. Then there is a circuit C ⊆ V . For every vertex v ∈ C, there is a
vertex g(v) ∈ X such that

• if v ∈ X, then g(v) = v,
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• otherwise, g(v) is a vertex ofX such that every path between it andC−{v}
includes v.

Notice that if v, v′ are distinct vertices of C, then g(v) 6= g(v′). In particular,
|X| ≥ |C|, implying in turn that |C| = 3, a contradiction as G is bipartite. Thus
G is a tree. It is immediate from our minimality assumption that every leaf of
G belongs toX.

We are now ready to prove the following lemma, the workhorse for the proof
of Theorem 4.1.8:

Lemma 4.5.4. Let C be a clean tangled clutter, where the following state-
ments hold:

(a) C has rank 7, and for each i ∈ [7], the ith connected component ofG(C) has
bipartition {Ui, Vi}.

(b) For each L ∈ L7,
⋃
i/∈L Ui ∪

⋃
j∈L Vj contains a member of C.

(c) For all L ∈ L7 but at most one,
⋃
j∈L Vj is a cover of C.

Then C has an L7 minor.

(In (b),
⋃
i/∈L Ui ∪

⋃
j∈L Vj for each L ∈ L7 must in fact be a member by Re-

mark 4.2.4; but the proof is easier to read given the current version of (b).)

Proof. Let G := G(C).

Claim 1. Take a subset L ⊆ [7] such that |L| ≤ 3 and
⋃
i∈L Vi is a cover. Then

L ∈ L7. Moreover,
⋃
i∈L Vi contains a minimal cover of cardinality three

picking one element from each Vi, i ∈ L.

Proof of Claim. As (b) holds,
⋃
i∈L Vi intersects each

⋃
i/∈L Ui∪

⋃
j∈L Vj , L ∈ L7,

implying in turn that L is a cover of L7. As b(L7) = L7 and |L| ≤ 3, it follows
that L ∈ L7. The second part follows from Theorem 4.5.2. ♦

Claim 2. For each L ∈ L7,
⋃
i∈L Vi is a cover.

Proof of Claim. Wemay assume because of (c) that for eachL ∈ L7−{{3, 5, 7}},⋃
i∈L Vi contains a minimal cover BL; we may assume by Claim 1 that BL has

cardinality three and picks one element from each Vi, i ∈ L. It remains to prove
that V3∪V5∪V7 is a cover. Suppose otherwise. Let C′ := C \ (V5∪V7)/(U5∪U7).

Assume in the first case that τ(C′) ≤ 1. That is, there is a minimal cover
D ∈ b(C) such thatD ∩ (U5 ∪ U7) = ∅ and |D − (V5 ∪ V7)| ≤ 1. It follows from
Claim 1 thatD− (V5 ∪V7) = {u} for some u ∈ V3 ∪U1 ∪U2 ∪U3 ∪U4 ∪U6. Our
contrary assumption tells us that u /∈ V3. But thenD is disjoint from one of⋃

i/∈L

Ui ∪
⋃
j∈L

Vj , L = {1, 2, 3}, {3, 4, 6},

a contradiction to (b).
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Assume in the remaining case that τ(C′) ≥ 2. Then C′ is clean tangled,
and G′ := G(C′) has G \ (U5 ∪ V5 ∪ U7 ∪ V7) as a subgraph. Then G′ is a
bipartite graph where for each i ∈ {1, 2, 3, 4, 6},G′[Ui∪Vi] is connected and has
bipartition {Ui, Vi}. Observe that for L = {1, 4, 5}, {2, 4, 7}, {2, 5, 6}, {1, 6, 7},
the setBL−(V5∪V7) is a cardinality-two cover, and therefore aminimum cover,
of C′. As a consequence, G′ has an edge between V1, V4, an edge between V4, V2,
an edge between V2, V6, and an edge between V6, V1. Let U := U1 ∪U2 ∪ V4 ∪ V6
and U ′ := V1 ∪ V2 ∪ U4 ∪ U6. Then G

′[U ∪ U ′] is connected and has bipartition
{U,U ′}. Since G′[U3 ∪ V3] is also connected, G′ has at most two connected
components. It therefore follows from Theorem 4.2.10 (i)-(ii) that either

U ∪ U3, U
′ ∪ V3 ∈ C′ or U ∪ V3, U ′ ∪ U3 ∈ C′.

Observe that BL − (V5 ∪ V7) = BL is a cover of C′ for L = {1, 2, 3}, {3, 4, 6}.
However, B{1,2,3} ∩ (U ∪ U3) = ∅ and B{3,4,6} ∩ (U ′ ∪ U3) = ∅, a contradiction.

As a result, V3 ∪ V5 ∪ V7 is a cover, as claimed. ♦

We may assume that C is contraction minimal with respect to being tangled
and satisfying (a)-(c). By Claims 1 and 2, for eachL ∈ L7, there exists a minimal
cover BL ∈ b(C) of cardinality three picking one element from each Vi, i ∈ L.
For each i ∈ [7], let

Xi := Vi ∩

( ⋃
L∈L7

BL

)
;

notice that 1 ≤ |Xi| ≤ 3.

Claim 3. For each i ∈ [7], either |Xi| = 1 and |Ui| = |Vi| = 1, or 2 ≤ |Xi| ≤ 3
and G[Ui ∪ Vi] is a tree whose leaves are contained inXi.

Proof of Claim. LetW be a subset of V such that (1)W ⊆ Ui ∪ Vi, (2)Xi ⊆W ,
(3) |W | ≥ 2, (4)G[W ] is connected, and (5)W is minimal subject to (1)-(4). Let
{U ′

i , V
′
i } be the bipartition of G[W ] where U ′

i ⊆ Ui and Xi ⊆ V ′
i ⊆ Vi. Notice

that if |Xi| = 1 then |U ′
i | = |V ′

i | = 1, and if 2 ≤ |Xi| ≤ 3 thenG[W ]must be a tree
whose leaves are contained inXi by Remark 4.5.3. Let I := (Ui∪Vi)− (U ′

i ∪V ′
i ).

Notice that C/I is clean and tangled, and satisfies (a) and (b). Moreover, since
BL ∩ I = ∅ for each L ∈ L7, C/I also satisfies (c). Our minimal choice of C
implies that I = ∅, so U ′

i = Ui and V
′
i = Vi, thereby finishing the proof of the

claim. ♦

Claim 4. For each i ∈ [7], |Xi| = 1 and |Ui| = |Vi| = 1.

Proof of Claim. Suppose otherwise. We may assume that G[U1 ∪ V1] is not
an edge. It then follows from Claim 3 that 2 ≤ |X1| ≤ 3 and G[U1 ∪ V1] is a
tree whose leaves are contained inX1. Pick a leaf u of the tree G[U1 ∪ V1] that
belongs to exactly one of B{1,2,3}, B{1,4,5}, B{1,6,7}, and let C′ := C/u. Since u is
a leaf of G[U1 ∪ V1], C′ is clean and tangled, and satisfies (a) and (b). Moreover,
as u belongs to exactly one of (BL : L ∈ L7), C′ also satisfies (c), a contradiction
to the minimality of C. ♦



CHAPTER 4. CLEAN TANGLED CLUTTERS 77

Let C′ := C/(U1 ∪ · · · ∪ U7).

Claim 5. C′ ∼= L7.

Proof of Claim. We know that BL ∈ b(C′) for each L ∈ L7, and that by Claim 1,
these are the only minimal covers of C′ of cardinality at most three. After a
possible relabeling of its elements, we may assume that C′ has ground set [7],
and thatBL = L for each L ∈ L7. We claim that b(C′) = L7. Suppose otherwise.
Then b(C′) has a member B of cardinality at least four. As L7 ⊆ b(C′), it follows
that |B| = 4 and B = [7] − L for some L ∈ L7. However, B is also a minimal
cover of C that is disjoint from

⋃
i/∈L Ui ∪

⋃
j∈L Vj , a contradiction to (b). As a

result, b(C′) = L7, so C′ = b(L7) = L7, as claimed. ♦

As a result, C′ has an L7 minor, thereby finishing the proof of Lemma 4.5.4.

Proof of Theorem 4.1.8

Let us start with the following remark about the cocycle space of the Fano
matroid:

Remark 4.5.5. cuboid(cocycle(PG(2, 2))) is, after a possible relabeling, a
clutter over ground set {1, 2, . . . , 7, 1̄, 2̄, . . . , 7̄} satisfying the following state-
ments:

• the members are {̄i : i ∈ [7]} and {i : i /∈ L} ∪ {j̄ : j ∈ L} for all L ∈ L7,

• the cardinality-three minimal covers are

{̄i, j̄, k̄}, {̄i, j, k}, {i, j̄, k}, {i, j, k̄}

for all {i, j, k} ∈ L7,

• every cardinality-three minimal cover is contained in exactly two mem-
bers.

Let S := cocycle(PG(2, 2)). As S is a binary space, it follows from Re-
mark 4.3.1 that S4p = S for every point p ∈ S. In particular, every member of
cuboid(S) can be treated as the first member {̄i : i ∈ [7]} above.

Proposition 4.5.6. Let C be a clean tangled clutter over ground set V that
has a unique fractional packing of value two, and of rank seven. Then C has
an L7 minor.

Proof. Let G := G(C), and for each i ∈ [7], let {Ui, Vi} be the bipartition of the
ith connected component of G. Let y be the fractional packing of C of value
two. As C has rank seven, it follows from Theorem 4.1.7 that support(y) is



CHAPTER 4. CLEAN TANGLED CLUTTERS 78

a duplication of cuboid(cocycle(PG(2, 2))). As support(y) ⊆ core(C), it fol-
lows from Remark 4.2.4 and Remark 4.5.5 that, after possibly relabeling and
swapping Ui, Vi, i ∈ [7], the following sets are the members of support(y):

7⋃
j=1

Vj and
⋃
i/∈L

Ui ∪
⋃
j∈L

Vj ∀L ∈ L7.

A subset B ⊆ V is a special cover of C if it is a monochromatic minimal
cover intersecting at most three connected components of G.

Claim 1. If B is a special cover of C, then

• there is a unique L ∈ L7 such that B ∩ (Ui ∪ Vi) 6= ∅ for each i ∈ L,

• {i ∈ L : B ∩ Ui 6= ∅} has even cardinality, and

• B is contained in exactly two members of support(y).

Proof of Claim. This follows immediately from Remark 4.5.5. ♦

Given a special cover B, we refer to L from Claim 1 as the Fano line corre-
sponding to B, and to {i ∈ L : B ∩ Ui 6= ∅} as the trace of B.

Claim 2. For every Fano line L ∈ L7, there are three corresponding special
covers with pairwise different traces.

Proof of Claim. Suppose otherwise. We may assume by symmetry between
the members of L7 that L = {1, 2, 3}. By Claim 1, every special cover corre-
sponding to L has trace ∅, {1, 2}, {1, 3} or {2, 3}. We may assume by symmetry
between the members of cuboid(cocycle(PG(2, 2))) that every special cover
corresponding to line L, if any, has trace {1, 2} or {1, 3}. Let C′ := C \ V1/U1

and G′ := G(C′). By Lemma 4.4.1, C′ is clean and tangled and has a unique
fractional packing of value two, and given that z is the fractional packing of
C′ of value two, support(z) = support(y) \ V1/U1. In particular, support(z) is
a duplication of cuboid(cocycle(PG(1, 2))) by Remark 4.4.3. Theorem 4.1.7
applied to C′ now tells us that

rank(C′) = 22 − 1 = 3.

Observe that for i ∈ [7]−{1},G[Ui∪Vi] ⊆ G′[Ui∪Vi], soG′[Ui∪Vi] is connected.
Let us refer to the edges of G′ not contained in any G′[Ui ∪ Vi], i ∈ [7]− {1} as
crossing edges. We claim that

(?) for every crossing edge {u, v}, either {u, v} ⊆ U4 ∪ U5, {u, v} ⊆
V4 ∪ V5, {u, v} ⊆ U6 ∪ U7 or {u, v} ⊆ V6 ∪ V7.
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To this end, pick distinct i, j ∈ [7]− {1} such that u ∈ Ui ∪ Vi and v ∈ Uj ∪ Vj .
Then V1 ∪ {u, v} contains a minimal cover of C, which is inevitably special. It
therefore follows from Claim 1 that {1, i, j} ∈ L7, and either {u, v} ⊆ Ui ∪ Uj
or {u, v} ⊆ Vi ∪ Vj . Since there is no special cover corresponding to line
{1, 2, 3} and trace either ∅, {2, 3}, it follows that {i, j} = {4, 5} or {6, 7}, so (?)
holds. However, (?) implies that G′ has at least four connected components, so
rank(C′) ≥ 4, a contradiction. ♦

Claim 3. There is a member of support(y) that contains six special covers
corresponding to different Fano lines.

Proof of Claim. By Claim 2, there are 21 = 7 × 3 special covers B1, . . . , B21

such that for distinct i, j ∈ [21], if Bi and Bj correspond to the same Fano line,
then they have different traces. By Claim 1, each Bi, i ∈ [21] is contained in
exactly twomembers of support(y). As a result, there is a member of support(y)
containing at least 21×2

8 > 5 special covers among B1, . . . , B21, as required. ♦

Wemay assume that
⋃7
j=1 Vj contains six special covers corresponding to

different Fano lines. As C satisfies conditions (a)-(c), wemay apply Lemma 4.5.4
to conclude that C has an L7 minor, as required.

We are now ready for the main result of this section:

Proof of Theorem 4.1.8. Let C be a clean tangled clutter with a unique frac-
tional packing of value two and of rank more than three. Let y be the frac-
tional packing of C of value two. It then follows from Theorem 4.1.7 that for
some integer k ≥ 3, C has rank 2k − 1, and support(y) is a duplication of
cuboid(cocycle(PG(k − 1, 2))). We prove by induction on k ≥ 3 that C has
an L7 minor. The base case k = 3 follows from Proposition 4.5.6. For the
induction step, assume that k ≥ 4. Let {U,U ′} be a connected component of
G(C), and let C′ := C \ U/U ′. By Lemma 4.4.1, C′ is clean tangled and has a
unique fractional packing of value two, and if z is the fractional packing of C′ of
value two, then support(z) = support(y) \ U/U ′. In particular, support(z) is
a duplication of cuboid(cocycle(PG(k − 2, 2))) by Remark 4.4.3. Thus C′ has
rank 2k−1−1 by Theorem 4.1.7, so by the induction hypothesis, C′ and therefore
C has an L7 minor, thereby completing the induction step. This finishes the
proof of Theorem 4.1.8.

Ideal clutters and an application

Theorem 4.1.8 has a geometric consequence; let us elaborate. A clutter C over
ground set V is ideal if the associated set covering polyhedron{

x ∈ RV+ :
∑
v∈C

xv ≥ 1 C ∈ C

}
is integral [14] (see also [1]). It can be readily checked by the reader that the
deltas and L7 are non-ideal clutters. (In fact, every identically self-blocking
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clutter different from {{a}} is non-ideal [3].) It can also be readily checked that
every extended odd hole is non-ideal. It is well-known that a clutter is ideal if
and only if its blocker is ideal [16, 19]. In particular, the blocker of an extended
odd hole is also non-ideal. Moreover, if a clutter is ideal, so is every minor of
it [23]. Thus, every ideal clutter is clean.

Theorem 4.5.7. Let C be a clean tangled clutter. If conv(setcore(C)) is a
simplex, then at least one of the following statements holds:

(i) setcore(C) = {0, 1}, i.e. core(C) consists of two members that partition
the ground set,

(ii) setcore(C) ∼= {000, 110, 101, 011}, i.e. core(C) is a duplication of Q6, or

(iii) C is non-ideal.

Proof. Let r := rank(C). If r > 3, then C has an L7 minor by Theorem 4.1.8,
so (iii) holds in particular. Otherwise, 1 ≤ r ≤ 3. It follows from Theo-
rem 4.1.7 that setcore(C) is isomorphic to either cocycle(PG(0, 2)) = {0, 1}
or cocycle(PG(1, 2)) = {000, 110, 101, 011}, so either (i) or (ii) holds, as re-
quired.

Observe that the statement of Theorem 4.5.7 is geometric while our proof is
purely combinatorial, further stressing the synergy between the combinatorics
and the geometry of clean tangled clutters. Recently, the authors gave an
example of an infinite class of clean tangled clutters (more precisely, ideal
minimally non-packing clutters with covering number two) that belong to
category (ii) of Theorem 4.5.7 [5].

4.6 Future directions for research

Clean tangled clutters were the subject of study in this paper. It was proved that
the convex hull of the setcore of every such clutter is a full-dimensional polytope
containing the center point of the hypercube in its interior (Theorem 4.1.5).
The setcore has a simplicial convex hull if and only if it is the cocycle space of a
projective geometry over the two-element field (Theorem 4.1.7). Moreover, if
the setcore has a simplicial convex hull, then the clutter has rank at most three
or it has an L7 minor (Theorem 4.1.8).

We conclude the paper with three directions for future research.
Our results expose a fruitful interplay between the combinatorics and the

geometry of clean tangled clutters. Further along these lines, and an extension
of Theorem 4.1.5, is a strong duality result that holds for such clutters and
relates a geometric parameter to a combinatorial parameter [2].

A clutter C embeds PG(k − 2, 2) if some subset of C is a duplication of the
cuboid of cocycle(PG(k − 2, 2)). This notion was defined in [11]. We conjecture
that,
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Conjecture 4.6.1. Every clean tangled clutter embeds a projective geometry
over the two-element field.

This conjecture has an intimate connection to dyadic fractional packings of
value two in clean tangled clutters; see [9]. Observe that Theorem 4.1.7 proves
Conjecture 4.6.1 when the setcore of the clutter has a simplicial convex hull.

The following variant of Conjecture 4.6.1 has also been conjectured:

Conjecture 4.6.2 ([11]). There exists an integer ` ≥ 3 such that every ideal
tangled clutter embeds one of PG(0, 2), . . . , PG(`− 1, 2).

This conjecture has an intimate connection to the idealness of k-wise inter-
secting clutters [11]. Observe that Theorem 4.5.7, which is a consequence of
Theorem 4.1.8, proves Conjecture 4.6.2 for ` = 3 when the setcore of the clutter
has a simplicial convex hull (in fact, ` = 2 suffices here).
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Chapter 5

A new infinite class of ideal
minimally non-packing clutters

Joint work with Ahmad Abdi and Gérard Cornuéjols.

Discrete Mathematics 344.7 (2021): 112413.

Abstract

The τ = 2 Conjecture predicts that every ideal minimally non-packing

clutter has covering number two. In the original paper where the conjecture

was proposed, in addition to an infinite class of such clutters, thirteen small

instances were provided. The construction of the small instances followed

an ad-hoc procedure and why it worked has remained a mystery, until

now. In this paper, using the theory of clean tangled clutters, we identify

key structural features about these small instances, in turn leading us to a

second infinite class of ideal minimally non-packing clutters with covering

number two. Unlike the previous infinite class consisting of cuboids with

unbounded rank, our class is made up of non-cuboids, all with rank three.

5.1 Introduction

Let C be a clutter over ground set V .1 The packing number, denoted ν(C), is
the maximum number of pairwise disjoint members. The covering number,
denoted τ(C), is the minimum cardinality of a cover, i.e. the minimum number
of elements needed to intersect every member. We have ν(C) ≤ τ(C); this
motivates the following standard definitions:

1To pick up the pace of the introduction, we have assumed familiarity with standard notions
such as clutters, minors, etc. and have postponed their definition to §5.1.

83
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• C packs if ν(C) = τ(C).

• C has the packing property if every minor of C, including C itself, packs
[8].

• C isminimally non-packing if C does not pack, but every proper minor of
C packs [8].

Observe that a clutter has the packing property if, and only if, it has nominimally
non-packing minor. It was proved in [8] that if C has the packing property, then
the set covering polyhedron{

x ∈ RV+ :
∑
v∈C

xv ≥ 1 C ∈ C

}

is integral, that is, C is ideal [9]. This implication is a consequence of a powerful
theorem of Lehman [15] on the structure of a minimally non-ideal clutter,
i.e. a non-ideal clutter whose proper minors are ideal. Since the packing
property implies idealness, every minimally non-packing clutter is either ideal
or minimally non-ideal.

An important conjecture in the area is the Replication Conjecture [6], stat-
ing that a minimally non-packing clutter cannot have replicated elements.
Lehman’s theorem verifies the conjecture for the minimally non-ideal clutters
(see [8]). It therefore remains to prove that an idealminimally non-packing clut-
ter cannot admit replicated elements. To solve the remaining case, Cornuéjols,
Guenin and Margot made the following stronger conjecture:

Conjecture 5.1.1 (τ = 2 Conjecture [8]). Every ideal minimally non-packing
clutter has covering number two.

All the examples of ideal minimally non-packing clutters known at the time
had covering number two, making the authors of [8] believe the conjecture
above. The readermay think that the reason for believing the conjecture is some-
what superficial but, recently, geometric evidence supporting the conjecture
was provided in [4].

Given the τ = 2 Conjecture, a natural research direction is to study, give
examples of, and characterize ideal minimally non-packing clutters with cover-
ing number two. In [8], the authors provided an infinite class of such clutters
along with thirteen small examples. The infinite class of ideal minimally non-
packing clutters consists of cuboids, and in papers [3, 4], by using the theory
of cuboids, more than 700 new small cuboid examples were generated via a
computer program. Twelve of the thirteen small examples [8], however, are
not cuboids. Other than the fact that they belong to chains of ideal minimally
non-packing clutters starting withQ6 [3], not much else has been known about
them.

In this paper, we use the theory of clean tangled clutters to identify key
structural properties about the thirteen small examples of ideal minimally
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non-packing clutters with covering number two, and in general about those
with rank three. This investigation leads us to a new infinite class of ideal
minimally non-packing clutters with covering number two, clutters which share
the identified structural properties with the thirteen small examples.

Since the new infinite class of ideal minimally non-packing clutters is easy to
describe, and the proof of correctness does not need much overhead knowledge,
we present these two things first. Given a clutter C over ground set V , we define
G(C) as the graph with vertices V and edges corresponding to the two-element
minimal covers of C.

Theorem 5.1.2. Let C be a clutter, and let G = G(C). Assume that

• G is bipartite and has exactly 3 connected components,

• the first connected component of G has two vertices 1, 2 and an edge
between them,

• the second connected component of G has two vertices 3, 4 and an edge
between them,

• the third connected component of G is a path on at least four edges,
where the first edge is {5, 6}, the last edge is {5′, 6′}, 5, 5′ belong to the
same part of the bipartition, and 6, 6′ belong to the other part of the
bipartition, and

• the minimal covers of C of cardinality different from two are precisely

{2, 4, 6}, {2, 3, 5}, {1, 4, 5′}, {1, 3, 6′} and {3, 5, 6′}, {4, 5′, 6}.

Then C is an ideal minimally non-packing clutter. (See Figure 5.1 for an
illustration of the graph G.)

After introducing some definitions and a preliminary in §5.1, we prove The-
orem 5.1.2 in §5.2. Then we prove in §5.3 that all ideal minimally non-packing
clutters with covering number two and rank three share certain structural
properties – properties that our new examples enjoy. We conclude the paper
in §5.4 by describing the thirteen examples of ideal minimally non-packing
clutters of [8] that we alluded to, and noting that these examples also enjoy the
structural properties discussed in §5.3.

Definitions and a preliminary

Given a finite set V , a clutter C over ground set V is a family of subsets of V ,
such thatC 6⊆ C ′ for allC,C ′ ∈ C. We refer to elements of V simply as elements,
and sets in C asmembers. A cover of C is a subset B ⊆ V with B ∩C 6= ∅ for all
C ∈ C. A transversal of C is a cover B ⊆ V with |B ∩ C| = 1 for all C ∈ C. A
cover isminimal if it does not contain another cover. The blocker b(C) of C is
the clutter over ground set V consisting of the minimal covers of C [10]. For all
clutters C, we have b(b(C)) = C [10, 13].
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For disjoint I, J ⊆ V , the minor C \ I/J of C obtained by deleting I and
contracting J is the clutter over ground setV −(I∪J) consisting of the inclusion-
wise minimal sets in {C \J : C ∈ C, C ∩ I = ∅}. We say that C \ I/J is a proper
minor of C if I ∪ J 6= ∅. Deletions in C correspond to contractions in b(C),
and contractions in C correspond to deletions in b(C), so that b(C \ I/J) =
b(C)/I \ J [19].

Recall that a clutter C is ideal if its set covering polyhedron{
x ∈ RV+ :

∑
v∈C

xv ≥ 1 C ∈ C

}

is integral. Idealness is closed under taking the blocker and minors. That is, C
is ideal if and only if b(C) is ideal [12, 14], and if C is ideal, then all minors of C
are ideal [20].

We now give some examples of non-ideal clutters. For any integer n ≥ 3,
the clutter∆n over ground set [n] = {1, . . . , n} is given by

∆n = {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}}

More generally, a delta is any clutter whose elements can be relabeled to obtain
∆n for some n. An extended odd hole is any clutter whose elements can be
relabeled as [n], for odd n ≥ 5, to obtain a clutter C of the form

C = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}} ∪ C′

where C′ consists of members with cardinality three or more. Note that the set

covering polyhedron of ∆n has a fractional vertex
(
n−2
n−1 ,

1
n−1 , . . . ,

1
n−1

)
, and

the set covering polyhedron of any extended odd hole has a fractional vertex(
1
2 , . . . ,

1
2

)
. Since a clutter C is ideal if and only if b(C) is ideal, the blocker of

any extended odd hole is also non-ideal. We might also remark that b(∆n) is
non-ideal, except that b(∆n) = ∆n. We need the following result for the proof
of Theorem 5.1.2:

Theorem 5.1.3 ([15], see also [18]). Every minimally non-packing clutter
with covering number two is ideal, a delta, or the blocker of an extended odd
hole.

5.2 Validity of our construction

We begin with a few definitions and notions. Let C be a clutter over ground set
V . Recall thatG(C) is the graph with vertices V and edges corresponding to the
two-element minimal covers of C.

Definition 5.2.1 ([5]). A clutter C is tangled if τ(C) = 2 and every element
of C is in a cardinality-two cover. That is, C is tangled if G(C) has no isolated
vertex.
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Note that for a tangled clutter C, every member of C is a vertex cover ofG(C).
(The converse, however, is not true.)

Definition 5.2.2. The rank of a tangled clutter C, denoted rank(C), is the
number of connected components of G(C).

Note that the clutters C described in Theorem 5.1.2 are tangled, have rank
three, and G(C) is bipartite. We will use these properties, along with the fol-
lowing lemma, to show that the clutters described in Theorem 5.1.2 do not
pack:

Lemma 5.2.3. Let C be a tangled clutter with rank three, and suppose G(C)
is bipartite. Denote by {U1, V1}, {U2, V2}, {U3, V3} the bipartitions of the con-
nected components ofG(C). If V1∪V2∪V3,U1∪U2∪V3,U1∪V2∪U3, V1∪U2∪U3

are covers of C, then C does not pack.

Proof. Suppose for contradiction that C packs, so that C has disjoint members
C1, C2. Then each edge of G(C) must have exactly one end in each of C1, C2,
so each Ci respects the bipartition of each connected component of G(C); that
is, Ci ∩ (Uj ∪ Vj) ∈ {Uj , Vj} for i ∈ [2] and j ∈ [3]. We may assume that
C1 ∩ (U1 ∪ V1) = U1 and so C2 ∩ (U1 ∪ V1) = V1. We have two cases:

Case 1: C1 ∩ (U2 ∪ V2) = U2 and so C2 ∩ (U2 ∪ V2) = V2. As V1 ∪ V2 ∪ V3 is a
cover, it follows that C1 ∩ (U3 ∪ V3) = V3 and so C2 ∩ (U3 ∪ V3) = U3. But then
C2 is disjoint from the cover U1 ∪ U2 ∪ V3.

Case 2: C1 ∩ (U2 ∪V2) = V2 and so C2 ∩ (U2 ∪V2) = U2. As V1 ∪U2 ∪U3 is a
cover, it follows that C1 ∩ (U3 ∪ V3) = U3 and so C2 ∩ (U3 ∪ V3) = V3. But then
C2 is disjoint from the cover U1 ∪ V2 ∪ U3.

In both cases we have a contradiction, so C does not pack.

We will use the following lemma to show that the clutters described in
Theorem 5.1.2 are minimally non-packing. Note that this lemma applies even
to clutters C where G(C) has isolated vertices:

Lemma5.2.4. Let C be a clutter over ground set V , and letG = G(C). Assume
that:

(i) G is a bipartite graph with bipartition {U0, V0},

(ii) |{B ∈ b(C) : |B| > 2}| ≤ 1, and

(iii) if B ∈ b(C) satisfies |B| > 2, then B = {u, v, w}where

• u ∈ U0 and {v, w} ⊆ V0, and

• in G, either v, w belong to different connected components, or some
neighbor of u is a cut-vertex of G separating v and w.

Then C has the packing property.
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Proof. We proceed by induction on |V | ≥ 2. The base case |V | = 2 holds
trivially, so we may assume |V | ≥ 3. Also, we may assume τ(C) ≥ 2.

Claim 1. C packs.

Proof of Claim. If τ(C) ≥ 3, then every minimal cover of C has cardinality
at least 3, so b(C) = {{u, v, w}}, so C = {{u}, {v}, {w}}, which clearly packs.
Otherwise, τ(C) = 2. Notice that both U0, V0 are covers of b(C), so they each
contain members of C, implying in turn that C has two disjoint members, so C
packs. ♦

Claim 2. For each x ∈ V , C/x has the packing property.

Proof of Claim. Notice that C/x satisfies (i)-(iii), so the claim follows from the
induction hypothesis. ♦

Claim 3. For each x ∈ V and N = {y ∈ V : {x, y} ∈ b(C)}, C \ x/N has the
packing property.

Proof of Claim. Let C′ = C \ x/N . If N 6= ∅, then C′ has the packing property
by Claim 2. We may therefore assume thatN = ∅. By the induction hypothesis,
it suffices to prove that C′ satisfies (i)-(iii). If x /∈ {u, v, w}, then C′ clearly
satisfies (i)-(iii). If x ∈ {v, w}, then since u ∈ U0 and {v, w} ⊆ V0, it follows
that C′ satisfies (i)-(iii). Otherwise x = u. As N = ∅, we see that v, w belong to
different connected components of G, so C′ satisfies (i)-(iii), as required. ♦

These three claims imply that C has the packing property. To see this,
consider an arbitrary minor C \ I/J of C. If I = J = ∅, then the minor packs by
Claim 1. If J 6= ∅, then the minor packs by Claim 2. Otherwise, J = ∅ and I 6= ∅.
If τ(C \ I/J) < 2, then the minor obviously packs. Otherwise, τ(C \ I/J) ≥ 2,
so by Claim 3, the minor packs. We have completed the induction step, thereby
finishing the proof of the lemma.

We are now ready to prove Theorem 5.1.2, stating that if C is tangled where
G(C) is as illustrated in Figure 5.1, and {2, 4, 6}, {2, 3, 5}, {1, 4, 5′}, {1, 3, 6′} and
{3, 5, 6′}, {4, 5′, 6} are theminimal covers of cardinality different from two, then
C is ideal minimally non-packing:

Proof of Theorem 5.1.2. Let C be a clutter satisfying the hypotheses of Theo-
rem 5.1.2. Note that C is tangled. Let {U3, V3} be the bipartition of the third
connected component ofG, where {5, 5′} ⊆ U3 and {6, 6′} ⊆ V3. (See Figure 5.1
for an illustration of G.)

Claim 1. C does not pack.

Proof of Claim. As {2, 4, 6}, {2, 3, 5}, {1, 4, 5′}, {1, 3, 6′} are minimal covers,

{2, 4} ∪ V3, {2, 3} ∪ U3, {1, 4} ∪ U3, {1, 3} ∪ V3

are covers, so C does not pack by Lemma 5.2.3. ♦
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Figure 5.1: The four possibilities for G from Theorem 5.1.2.

In what follows, notice that in our setup, there is symmetry between 1, 2,
between 3, 4, between 5, 6, between 5′, 6′, and between {5, 6}, {5′, 6′}.

Claim 2. Every proper contraction minor of C packs.

Proof of Claim. Choose I ⊆ V such that τ(C/I) ≥ 2. Let C′ = C/I and notice
that b(C′) = b(C) \ I. As a result, τ(C′) ∈ {2, 3}. If τ(C′) = 3, then it can
be readily checked that b(C′) has at most two members, each of cardinality 3,
implying in turn that C′ packs. Otherwise, τ(C′) = 2, in which case we need
to look for disjoint members in C′. As disjoint members remain disjoint in
contraction minors, we may assume that I = {x}. In what follows, we find
disjoint covers in b(C′). Assume in the first case that x ∈ {1, 2, 3, 4, 5, 6, 5′, 6′}.
By symmetry, we may assume that x /∈ {2, 4, 6, 5′, 6′}.

• If x = 1, then {2, 3} ∪ V3, {4} ∪ U3 are disjoint covers of b(C′).

• If x = 3, then {1, 4} ∪ V3, {2} ∪ U3 are disjoint covers of b(C′).

• Otherwise, x = 5. Then {2, 3} ∪ (U3 − {5}), {1, 4} ∪ V3 are disjoint covers
of b(C′).

Assume in the remaining case that x ∈ V − {1, 2, 3, 4, 5, 6, 5′, 6′} = (U3 ∪
V3)−{5, 6, 5′, 6′}. Notice that deleting x fromG disconnects the third connected
component, that is, G \ x has four connected components with bipartitions
{{1}, {2}}, {{3}, {4}}, {U ′

3, V
′
3}, {U ′′

3 , V
′′
3 }, where U ′

3 ∪ U ′′
3 = U3 − {x}, V ′

3 ∪
V ′′
3 = V3 − {x}, 5 ∈ U ′

3, 6 ∈ V ′
3 , 5

′ ∈ U ′′
3 and 6′ ∈ V ′′

3 . Observe now that
{1, 3} ∪ (V ′

3 ∪ U ′′
3 ), {2, 4} ∪ (U ′

3 ∪ V ′′
3 ) are disjoint covers of b(C′).

In each case, we proved that b(C′) has disjoint covers, giving disjoint mem-
bers of C′ in turn, as desired. ♦
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Claim 3. Let I ⊆ V be nonempty, such that I is disjoint from

{1, 2, 3, 4, 5, 6, 5′, 6′}

and not a cover of C. Let N ⊆ V − I be a set containing
{
y ∈ V − I : {x, y} ∈

b(C) for some x ∈ I
}
. Then C \ I/N packs.

Proof of Claim. Let C′ = C \ I/N , and note that b(C′) = b(C)/I \ N . As I ∩
{1, 2, 3, 4, 5, 6, 5′, 6′} = ∅, it follows that b(C)/I \N = b(C) \ (I ∪N), implying
that C′ = C/(I ∪N), so C′ packs by Claim 2. ♦

Claim 4. Let x ∈ {1, 2, 3, 4, 5, 6, 5′, 6′} and N = {y ∈ V : {x, y} ∈ b(C)}. Then
C \ x/N has the packing property.

Proof of Claim. By symmetry, wemay assume that x /∈ {2, 4, 6, 5′, 6′}. To prove
the claim, it suffices to show that C \ 1/2, C \ 3/4 and C \ 5/6 have the packing
property.

Every minimal cover of C \1/2 has cardinality two, and the graph over vertex
set V − {1, 2} of the minimal covers of the minor is bipartite with bipartition
{3} ∪ U3, {4} ∪ V3, so C \ 1/2 has the packing property by Lemma 5.2.4.

Every minimal cover of C \ 3/4 also has cardinality two, and the graph
over vertex set V − {3, 4} of the minimal covers of the minor is bipartite with
bipartition {1} ∪ U3, {2} ∪ V3, so once again C \ 3/4 has the packing property
by Lemma 5.2.4.

Finally, let C′ = C \ 5/6, and let G′ be the graph over vertex set V − {5, 6}
whose edges correspond to the cardinality two minimal covers of C′. Notice
that G′ is a bipartite graph with bipartition {1, 3} ∪ (U3 − {5}), {2, 4} ∪ (V3 −
{6}). Moreover, there is only one minimal cover with cardinality greater than
two, namely {1, 4, 5′}. Furthermore, the neighbor 3 of 4 in G′ is a cut-vertex
separating 1, 5′. Thus C′ has the packing property by Lemma 5.2.4. ♦

These four claims imply that C is a minimally non-packing clutter. To see
this, note first that the clutter does not pack by Claim 1. Let C \ I/J be a
proper minor. If I = ∅, then the minor packs by Claim 2. Otherwise, I 6= ∅.
If τ(C \ I/J) < 2, then the minor clearly packs. Otherwise, τ(C \ I/J) ≥ 2. If
I ∩ {1, 2, 3, 4, 5, 6, 5′, 6′} 6= ∅, then the minor packs by Claim 4. Otherwise, I
is disjoint from {1, 2, 3, 4, 5, 6, 5′, 6′}. In this case, as τ(C \ I/J) ≥ 2, it must
be that J ⊇

{
y ∈ V − I : {x, y} ∈ b(C) for some x ∈ I

}
, so the minor packs by

Claim 3. We have exhausted all cases, so every proper minor of C packs, so C is
a minimally non-packing clutter.

By Theorem 5.1.3, C is ideal, a delta, or the blocker of an extended odd hole.
However, as G is a bipartite graph with at least two connected components, C
must be an ideal clutter, thereby finishing the proof.

Take an integer r ≥ 1. Given a set S ⊆ {0, 1}r, the cuboid of S is the
clutter over ground set [2r] whose members have incidence vectors {(p1, 1 −
p1, . . . , pr, 1− pr) : p ∈ S}. We call a clutter a cuboid if it can be obtained from
the cuboid of some set S by relabeling elements of the ground set [2r]. In other
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words, a cuboid is a clutter C whose ground set can be relabeled as [2r] for some
integer r ≥ 1, such that {2i− 1, 2i} for each i ∈ [r] is a transversal:

|{1, 2} ∩ C| = |{3, 4} ∩ C| = · · · = |{2r − 1, 2r} ∩ C| = 1 ∀C ∈ C.

Notice that every member of C has cardinality r, and that {2i− 1, 2i} for each
i ∈ [r] is a cover. Thus, if C has no cover of cardinality one, then C is a tangled
clutter where G(C) has at least the edges {1, 2}, {3, 4}, . . . , {2r − 1, 2r}. Our
construction has the promised properties:

Remark 5.2.5. The clutters C described in Theorem 5.1.2 have τ(C) = 2,
rank(C) = 3, and are not cuboids.

Proof. The first two properties are immediate. To see that C is not a cuboid,
note first that |V | ≥ 9. If |V | is odd, then we are clearly done. Otherwise,
|V | is even. We prove that C has a member of cardinality greater than |V |/2,
thereby finishing the proof. To this end, let {U3, V3} be the bipartition of the
third connected component of G(C), where {5, 5′} ⊆ U3 and {6, 6′} ⊆ V3. The
third connected component is either a 56′- or 5′6-path (see Figure 5.1). In the
first case, {1, 4, 5} ∪ V3 is a member of C of cardinality (|V |+ 2)/2, while in the
remaining case, {1, 3, 6} ∪ U3 is a member of C of cardinality (|V | + 2)/2, as
claimed.

That our infinite class of ideal minimally non-packing clutters consists of
non-cuboids all with rank three is interesting because the only other known
infinite class of such examples, due to [8], is a family of cuboids of unbounded
rank (see [3]).

5.3 Structure of ideal minimally non-packing clutters

Our goal in this section is to prove Theorem 5.3.13, that all ideal minimally
non-packing clutters with covering number two and rank three share certain
structural properties. To describe these properties, we need a few concepts
first.

Clean tangled clutters, the core, and the setcore

Let us begin with the following definition:

Definition 5.3.1. A clutter C is clean if no minor of C is a delta or the blocker
of an extended odd hole.

In particular, ideal clutters are clean, so the clutters obtained by our construc-
tion are clean. We are particularly interested in clean tangled clutters. To
see why the tangled assumption is reasonable, note that in general we have
τ(C \ v) ≤ τ(C) and ν(C \ v) ≤ ν(C). But if v is in no cover of cardinality τ(C),
then τ(C \ v) = τ(C), and in particular C cannot be minimally non-packing. To
summarize:
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Remark 5.3.2. Every ideal minimally non-packing clutter with covering
number two is a clean tangled clutter.

For clean tangled clutters, the graph G(C) of cardinality-two covers takes a
nice form:

Theorem 5.3.3 ([2], Remark 6 and Theorem 7). If C is a clean tangled clutter,
then:

(i) G(C) is a bipartite graph without isolated vertices ([2], Remark 6).

If, in addition, G(C) is connected and {U1, V1} is the bipartition of G(C), then:

(ii) Neither of U1, V1 is a cover of C ([2], Theorem 7).

(iii) U1, V1 are members of C.

Proof. (iii) It follows from (ii) that the complement of U1, namely V1, contains
a member of C. Since every member of C is a vertex cover ofG(C) and no proper
subset of V1 is a vertex cover, it follows that V1 itself is a member of C. Similarly,
U1 is a member of C, as required.

For any clutter C, a fractional packing of C is a feasible point of the following
linear program:

max 1>y
s.t.

∑
(yC : v ∈ C ∈ C) ≤ 1 v ∈ V

y ≥ 0.

The value of a fractional packing y is the value 1>y of the linear program. It
can be readily verified that by weak duality, the value of any fractional packing
is bounded above by τ(C). The following result was proved recently:

Theorem 5.3.4 ([2], Theorem 3 and [1], Lemma 1.6). If C is a clean tangled
clutter, then C has a fractional packing of value two.

As a result, we may study the structure of the members of C used in some
such fractional packing:

Definition 5.3.5. Let C be a clean tangled clutter. Then the core of C is the
clutter

core(C) = {C ∈ C : yC > 0 for some fractional packing y of value two}.

We use a complementary slackness argument to prove the following:

Lemma 5.3.6. Let C be a clean tangled clutter over ground set V . Then
every member of core(C) is a transversal of the cardinality-two covers of C.
Moreover, for every fractional packing y of value two and for every element
v ∈ V , we have

∑
(yC : v ∈ C ∈ C) = 1.
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Proof. Let {u, v} be a cover of C, and let y be a fractional packing of C. Then
we have∑

(yC : C ∈ C) ≤
∑

(yC : u ∈ C ∈ C) +
∑

(yC : v ∈ C ∈ C) ≤ 2

The first inequality follows from the fact that each C ∈ C contains either u or v,
and the second follows from adding the congestion inequalities for each of u, v.
If y has value two, then

∑
(yC : C ∈ C) = 2, so we have equality above. The first

equality implies that if yC > 0, then C contains exactly one of u, v. Therefore,
every member of core(C) is a transversal of the cardinality-two covers {u, v}.

The second equality implies that
∑

(yC : u ∈ C ∈ C) =
∑

(uC : v ∈ C ∈
C) = 1. Since C is tangled, every element v ∈ V appears in some cardinality-two
cover of C, so

∑
(yC : v ∈ C ∈ C) = 1 for all v ∈ V .

As a result, since G(C) is bipartite, members of the core must respect the
bipartition of each connected component:

Remark 5.3.7. Let C be a clean tangled clutter, and let r = rank(C). For
each i ∈ [r], denote by {Ui, Vi} the bipartition of the ith connected component
of G(C). If C ∈ core(C), then C ∩ (Ui ∪ Vi) ∈ {Ui, Vi} for i ∈ [r].

In other words, each C ∈ core(C) is determined by r binary choices; in
each connected component, C must contain exactly one of the two parts of the
bipartition. This allows a more concise representation of the core:

Definition 5.3.8. Let C be a clean tangled clutter, and let r = rank(C). For
each i ∈ [r], denote by {Ui, Vi} the bipartition of the ith connected component
of G(C). For each C ∈ core(C), define pC ∈ {0, 1}r such that

(pC)i =

{
0 if C ∩ (Ui ∪ Vi) = Vi

1 if C ∩ (Ui ∪ Vi) = Ui

The setcore of C is the subset of {0, 1}r given by setcore(C) = {pC : C ∈ core(C)}.
(The setcore is defined up to relabeling and twisting coordinates, since our
definition would change if U1, . . . , Ur were relabeled, or if the roles of Ui, Vi
were swapped.)

Given a clutter C over ground set V , we may obtain a new clutter by duplicat-
ing a chosen element v ∈ V ; specifically, we obtain the clutter C′ over ground
set V ∪ {v′} where v′ /∈ V , given by

C′ = {C ∪ {v′} : C ∈ C, v ∈ C} ∪ {C : C ∈ C, v /∈ C}.

In general, if C′ can be obtained from C by a finite number of duplications, we
say that C′ is a duplication of C. Note that:

Remark 5.3.9. Given a clean tangled clutter C, core(C) is a duplication of
the cuboid of setcore(C).
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Now consider the task of finding a fractional packing of C of value two. By
definition, our fractional packing may only use members in core(C), and by
Lemma 5.3.6, our fractional packing must assign a total weight of 1 to members
C with (pC)i = 0, and a total weight of 1 to members C with (pC)i = 1, for each
i ∈ [r]. Therefore, after a 1

2 -scaling, finding a fractional packing of value two
becomes equivalent to expressing 1

2 · 1 ∈ [0, 1]r as a convex combination of
setcore(C). Then Theorem 5.3.4 implies:

Remark 5.3.10. If C is a clean tangled clutter, then the convex hull of
setcore(C) contains 1

2 · 1. Moreover, for each x ∈ setcore(C), we can write 1
2 · 1

as a convex combination of setcore(C)which assigns a nonzero weight to x.

Ideal minimally non-packing clutters of rank three

We just saw in Remark 5.3.10 that if C is a clean tangled clutter, then the setcore
contains the center of the unit hypercube in its convex hull. If we additionally
assume C does not pack and has rank three, i.e. G(C) has exactly three connected
components, then the setcore is determined up to twisting:

Lemma 5.3.11. Let C be a clean tangled clutter with rank three, and as-
sume that (0, 0, 0) ∈ setcore(C) and C does not pack. Then setcore(C) =
{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

For the proof of the lemma, note that finding an integral packing of value two in
C is equivalent to finding two points p, q ∈ setcore(C) such that p+ q = 1. That
is, finding two disjoint members in C amounts to finding a pair of antipodal
points in setcore(C).

Proof. Since C is tangled, we have τ(C) = 2. Since C does not pack, setcore(C)
does not have antipodal points, so (1, 1, 1) /∈ setcore(C). By Remark 5.3.10,
we can write

(
1
2 ,

1
2 ,

1
2

)
as a convex combination of setcore(C) which assigns a

nonzero weight to (0, 0, 0). Since
(
1
2 ,

1
2 ,

1
2

)
lies on the plane x1 + x2 = 1, and

(0, 0, 0) lies on one side of the plane, setcore(C) must contain a point on the
other side, which must be (1, 1, 0). Similarly, setcore(C) contains (1, 0, 1) and
(0, 1, 1), and cannot contain any other points by the antipodality restriction.

The hypothesis that setcore(C) = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} guar-
antees the presence of four specific members of C, which in turn imposes re-
strictions on the minimal covers of C:

Lemma 5.3.12. Let C be a clean tangled clutter with rank three, and denote
by {U1, V1}, {U2, V2}, {U3, V3} the bipartitions of the connected components of
G(C). Assume that

C1 = V1∪V2∪V3 C2 = V1∪U2∪U3 C3 = U1∪V2∪U3 C4 = U1∪U2∪V3

are members of C. Then:
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<latexit sha1_base64="Zw1CgAtSkeqnclS8+O1C+hrx9fk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKxR4LXjxWNLXQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikbZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK/hiOb+b+4xPXRiTqAScpD2I6VCISjKKV7v1+rV+uuFV3AbJOvJxUIEerX/7qDRKWxVwhk9SYruemGEypRsEkn5V6meEpZWM65F1LFY25CaaLU2fkwioDEiXalkKyUH9PTGlszCQObWdMcWRWvbn4n9fNMGoEU6HSDLliy0VRJgkmZP43GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvNWX10m7VvXq1au7eqXZyOMowhmcwyV4cA1NuIUW+MBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wfXaY18</latexit>
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<latexit sha1_base64="ZSb9h7hG5+PlrbihF1V7KFcOehE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0Yo8FLx4rGltoQ9lsJ+3SzSbsboRS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+HoZua3nlBpnsgHM04xiOlA8ogzaqx07/cue+WKW3XnIKvEy0kFcjR75a9uP2FZjNIwQbXueG5qgglVhjOB01I305hSNqID7FgqaYw6mMxPnZIzq/RJlChb0pC5+ntiQmOtx3FoO2NqhnrZm4n/eZ3MRPVgwmWaGZRssSjKBDEJmf1N+lwhM2JsCWWK21sJG1JFmbHplGwI3vLLq+TxourVqld3tUqjnsdRhBM4hXPw4BoacAtN8IHBAJ7hFd4c4bw4787HorXg5DPH8AfO5w/Y7Y19</latexit>

V3

<latexit sha1_base64="u7GYGDhUEpoKMcBCspVj0AMmrsc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolW7LHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6aPWv+qWyW3HnIKvEy0kZcjT6pa/eIGZphNIwQbXuem5i/Iwqw5nAabGXakwoG9Mhdi2VNELtZ/NTp+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5uasOZnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlqXFa9aub6vluu1PI4CnMIZXIAHN1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AHac41+</latexit>

V2

<latexit sha1_base64="OvFy3SM+dK16j7xiiP4liAVGrGU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKxR4LXjxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmN3P/8QmV5rF8MNME/YiOJA85o8ZK951BbVCuuFV3AbJOvJxUIEdrUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCRt+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTq3r16tVdvdJs5HEU4QzO4RI8uIYm3EIL2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfY7419</latexit>

V1

<latexit sha1_base64="uDafg8TVyhsl5KRJl30UzHmAeWs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYo8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+2BNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wvb6vVRr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDXa418</latexit>

… …

Figure 5.2: The minimal covers {v1, v2, v3}, {u1, u2, v′3} in Lemma 5.3.12 (ii).

(i) If Ci is a cover for some i ∈ [4], then Ci contains a minimal cover of car-
dinality three, consisting of one element from each connected component
of G(C).

(ii) Assume that {v1, v2, v3} and {u1, u2, v′3} are minimal covers of C for some
u1 ∈ U1, u2 ∈ U2, v1 ∈ V1, v2 ∈ V2, v3, v

′
3 ∈ V3 (see Figure 5.2). Then

there exists a minimal cover B of C with B ∩ (U1 ∪ V1) = {u1, v1} and
|B| ≤ 3.

Proof. (i) By symmetry, it suffices to prove the statement for C1. Choose a
coverB ⊆ V1∪V2∪V3 ofminimum cardinality. ThenB intersects each Vi, elseB
would be disjoint from one ofC2, C3, C4. Suppose for contradiction |B∩V1| ≥ 2,
and consider C′ = C \ I/J for I = B − V1, J = (U2 ∪ V2 ∪ U3 ∪ V3)−B, so that
C′ has ground set U1 ∪ V1. We have two cases:

Case 1: τ(C′) ≥ 2. Since C′ is a minor of C, it follows that C′ is clean. Since
the induced subgraph G(C)[U1 ∪ V1] is a subgraph of G(C′), it follows that C′ is
tangled. Then G(C′) is bipartite by Theorem 5.3.3 (i). The subgraph relation
implies that G(C′) is connected and has bipartition {U1, V1}, so U1 is a member
of C′ by Theorem 5.3.3 (iii). But B − I = B ∩ V1 is a cover of C′ disjoint from
U1, a contradiction.

Case 2: τ(C′) ≤ 1; that is, there exists D ∈ b(C) with D ⊆ U1 ∪ V1 ∪ I and
|D ∩ (U1 ∪ V1)| ≤ 1. Therefore, ifD contains an element of U1, thenD ∩ V1 = ∅,
soD is disjoint fromC4 = V1∪U2∪U3, a contradiction. Therefore,D is disjoint
from U1, soD ⊆ V1 ∪ V2 ∪ V3, and

|D| ≤ |D − I|+ |I| ≤ 1 + |B − V1| < |B ∩ V1|+ |B − V1| = |B|,

a contradiction to the minimality of B. Hence |B ∩ V1| = 1, and similarly
|B ∩ V2| = 1 and |B ∩ V3| = 1.

(ii) Suppose otherwise. Let J = (U1 ∪ V1) − {u1, v1}, and let C′ = C \
{u1, v1}/J ; then our contrary assumption implies τ(C′) ≥ 2. Since C′ is a minor
of C, it follows that C′ is clean. Since the induced subgraphG(C)[U2∪V2∪U3∪V3]
is a subgraph of G(C′), it follows that C′ is tangled. Then G(C′) is bipartite by
Theorem 5.3.3 (i).

Note that u2, v2 are connected by an odd length path in G(C)[U2 ∪ V2] and
hence also in G(C′)[U2 ∪ V2]. Similarly, v3, v

′
3 are connected by an even length

path inG(C)[U3∪V3] and hence also inG(C′)[U3∪V3]. But since {v1, v2, v3} and
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{u1, u2, v′3} areminimal covers of C, it follows that {u2, v′3}, {v2, v3} are covers of
C′, hence edges ofG(C′), which gives an odd cycle inG(C′), a contradiction.

The following theorem summarizes the discussion in this section:

Theorem 5.3.13. Let C be an ideal minimally non-packing clutter with
covering number two and rank three. Then:

(i) C is a clean tangled clutter.

(ii) G(C) is bipartite, and the bipartitions of the connected components may
be labeled as {U1, V1}, {U2, V2}, {U3, V3}, in such a way that setcore(C) =
{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, so that the following are members
of C:

C1 = V1 ∪ V2 ∪ V3,
C2 = U1 ∪ U2 ∪ V3,
C3 = U1 ∪ V2 ∪ U3,

C4 = V1 ∪ U2 ∪ U3

(iii) Each of C1, C2, C3, C4 contains a minimal cover of cardinality three,
consisting of one element from each connected component of G(C).

(iv) If {v1, v2, v3} and {u1, u2, v′3} are minimal covers of C for some u1 ∈ U1,
u2 ∈ U2, v1 ∈ V1, v2 ∈ V2, v3, v

′
3 ∈ V3, then there exists a minimal coverB

of C withB ∩ (U1 ∪V1) = {u1, v1} and |B| ≤ 3, and similarly, there exists
a minimal coverB′ of C withB′ ∩ (U2 ∪V2) = {u2, v2} and |B′| ≤ 3. (The
analogous statements obtained by using any of U1, U2, U3, V1, V2 in the
place of V3 also hold.)

Proof. Statement (i) follows from Remark 5.3.2. By Theorem 5.3.3 (i), G(C)
is bipartite, and by Theorem 5.3.4, core(C) is nonempty, so we may label the
bipartitions of the connected components as {U1, V1}, {U2, V2}, {U3, V3} in such
a way that (0, 0, 0) ∈ setcore(C). Then by Lemma 5.3.11, we have setcore(C) =
{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, so that C1, C2, C3, C4 are members of C.

Now we observe that C1 is also a cover of C, since otherwise, C would have a
member disjoint from C1, resulting in a pair of disjoint members, contradicting
the assumption that C does not pack. Similarly, C2, C3, C4 are covers of C.
Hence (iii) and (iv) follow from Lemma 5.3.12.

Consider the new ideal minimally non-packing clutters of Theorem 5.1.2.
We leave it to the reader to verify that the four minimal covers {2, 4, 6}, {2, 3, 5},
{1, 4, 5′}, {1, 3, 6′} “come from” Theorem 5.3.13 (iii), while the two minimal
covers {3, 5, 6′}, {4, 5′, 6} come from Theorem 5.3.13 (iv).

The well-known clutter Q6 over ground set [6] is defined by

Q6 = {{2, 4, 6}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}}.

Theorem 5.3.13 (ii) and Remark 5.3.9 immediately imply:
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Corollary 5.3.14. Let C be an ideal minimally non-packing clutter with
covering number two and rank three. Then core(C) is a duplication of Q6.

It is known that all ideal minimally non-packing clutters with covering
number two share a weaker property:

Theorem 5.3.15 ([8]). Let C be an ideal minimally non-packing clutter with
covering number two. Then some subset of C is a duplication of Q6.

In general, this Q6-like subset need not be core(C) itself, since rank(C)may
be greater than three. It is a feature of our construction that the clutters ob-
tained, having rank three, exhibit Q6-like structure in their core.

5.4 Previously known constructions

We conclude by describing the small instances of ideal minimally non-packing
clutters provided by Cornuéjols, Guenin and Margot [8]. These constructions
give thirteen ideal minimally non-packing clutters with covering number two
and rank three. In Figures 5.3 and 5.4, these clutters are depicted via their
blockers; cardinality-two minimal covers are shown as edges of a bipartite
graph, and cardinality-three minimal covers are listed below the graph (and
there are no other minimal covers).

The first twelve clutters (see Figure 5.3) are obtained by a common con-
struction and are denoted Q6 ⊗X, whereX ⊆ [6], subject to some restrictions
on X. The construction produces clutters with exactly four minimal covers
of cardinality three and no minimal covers of higher cardinality. The clutter
Q6 ⊗ ∅ is just Q6. The thirteenth clutter (see Figure 5.4) is a one-off example
not conforming to the construction, and has the following incidence matrix:

1 1′ 2 2′ 3 4 5 6



1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 1 1 0
1 0 1 1 1 0 1 0
0 1 1 0 0 1 0 1
0 1 1 0 1 0 0 1
1 1 0 1 0 1 1 0

All of these clutters share the properties required by Theorem 5.3.13. For
instance, for the thirteenth clutter with the incidence matrix shown above, we
have U1 = {1, 1′}, V1 = {2, 2′}, U2 = {3}, V2 = {4} and U3 = {6}, V3 = {5}.
The first four rows form the core, reaffirming (ii). The fourmembers contain the
minimal covers {1′, 3, 5}, {1, 4, 6}, {2′, 3, 6}, {2, 4, 5}, respectively, reaffirming
(iii). Lastly, the five cardinality-two minimal covers, along with the minimal
cover {1, 2′, 6}, reaffirm (iv).
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Late note on dijoins. After writing this paper, we noticed an intimate
connection between our findings and some results on dijoins from the early
2000s. Let us explain this connection.

Ideal minimally non-packing clutters arise naturally from directed graphs.
Let D = (V,A) be a digraph. A dicut is a cut of the form δ+(U) ⊆ A where
δ−(U) = ∅, for some nonempty and proper subset U of V . A dijoin is any
cover of the clutter of minimal dicuts. Equivalently, J ⊆ A is a dijoin ifD/J is
strongly connected.

Denote by C(D) be the clutter of minimal dijoins of D. It follows from a
well-known result of Lucchesi and Younger that C(D) is ideal [16]. Woodall’s
Conjecture states that the clutter C(D)must pack, a problem that has remained
open to this date despite its simple statement [22]. The history of the problem is
furthermuddled by the fact that C does not have the packing property. (Deletion
in the clutter does not correspond to deletion in the digraph.)

Consider the three digraphsD1, D2, D3 depicted in Figures 5.5, 5.6 and 5.7.
The first digraph is due to Schrijver [17], while the other two are due to Cor-
nuéjols and Guenin [7]. These digraphs were found as counterexamples to a
conjecture of Edmonds and Giles on dijoins [11]. Even though C(Di), i ∈ [3]
pack, they do not have the packing property. More specifically, for i ∈ [3],
denote by Ii the arc subset corresponding to the dashed arcs ofDi. Then the
minor C(Di) \ Ii, i ∈ [3] is an ideal minimally non-packing clutter with covering
number two. In fact, C(D1) \ I1 = Q6 ⊗ {2, 4, 5}. The blocker of C(Di) \ Ii
is depicted next to Di, where cardinality-two minimal covers are shown as
edges of a bipartite graph, and all the other minimal covers are listed below
the graph. The reader will notice that each C(Di) \ Ii, i ∈ [3] has rank three.
This can already be observed by looking at the digraph, as the solid arcs form
three connected components, each of which is an alternating path of sources
and sinks.

For more information, we refer the reader to Aaron Williams’s very inter-
esting Master’s thesis [21]. He has shown that, up to a novel reduction called
folding, the three clutters C(Di) \ Ii, i ∈ [3] are the only ideal minimally non-
packing clutters of covering number two and rank three coming from dijoins
(see Chapter 6). He has also shown that C(D) \ I cannot be ideal minimally
non-packing with covering number two and rank four (see Chapter 7).
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Figure 5.3: The blockers of the twelve clutters Q6 ⊗X from [8].
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Chapter 6

A nonlinear Lazarev-Lieb
theorem: L2-orthogonality via
motion planning

Joint work with Florian Frick.
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6.1 Introduction

In 1965 Hobby and Rice established the following result:

Theorem 6.1.1 (Hobby and Rice [4]). Let f1, . . . , fn ∈ L1([0, 1];R). Then
there exists h : [0, 1] → {±1}with at most n sign changes, such that for all j,∫ 1

0

fj(x)h(x)dx = 0.

If we restrict the fj to lie inL
2([0, 1];R), we can view this as an orthogonality

result in theL2 inner product. The Hobby–Rice theorem and its generalizations
have found a multitude of applications, ranging from mathematical physics [6]
and combinatorics [1] to the geometry of spatial curves [2].

The theorem also holds for f1, . . . , fn ∈ L1([0, 1];C), provided h is allowed
2n sign changes, by splitting the fj into real and imaginary parts. Lazarev
and Lieb showed that for complex-valued fj , the function h can be chosen in
C∞([0, 1];S1), where S1 denotes the unit circle in C:

103
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Theorem 6.1.2 (Lazarev and Lieb [5]). Let f1, . . . , fn ∈ L1([0, 1];C). Then
there exists h ∈ C∞([0, 1];S1) such that for all j,∫ 1

0

fj(x)h(x)dx = 0.

If h is obtained by smoothing the function h0 guaranteed by Theorem 6.1.1,
then we would expect itsW 1,1-norm, given by

‖h‖W 1,1 =

∫ 1

0

|h(x)|dx+

∫ 1

0

|h′(x)|dx

to be approximately 1 + 2πn, since |h(x)| = 1, and each sign change of h0
contributes approximately π to

∫ 1

0
|h′(x)|dx. However, Lazarev and Lieb did

not establish any bound on theW 1,1-norm of h and left this as an open problem;
this was accomplished by Rutherfoord [9], who established a bound of 1 + 5πn.
Here we improve this bound to 1 + 2πn; see Corollary 6.1.4.

The Hobby–Rice theorem has a simple proof due to Pinkus [8] via the
Borsuk–Ulam theorem, which states that any map f : Sn → Rn with f(−x) =
−f(x) for all x ∈ Sn has a zero. Lazarev and Lieb asked whether there is a
similar proof of their result and write: “There seems to be no way to adapt the
proof of the Hobby–Rice Theorem (which involves a fixed-point argument).”
Rutherfoord [9] offered a simplified proof of Theorem 6.1.2 based on Brouwer’s
fixed point theorem. Here we give a proof using the Borsuk–Ulam theorem
directly, which adapts Pinkus’ proof of theHobby–Rice theorem. The advantage
of this approach is that our main result gives a nonlinear extension of the result
of Lazarev and Lieb; see Section 6.4 for the proof:

Theorem 6.1.3. Let ψ : C∞([0, 1];S1) → Rn be continuous with respect to
the L1-norm such that ψ(−h) = −ψ(h) for all h ∈ C∞([0, 1];S1). Then there
exists h ∈ C∞([0, 1];S1)with ψ(h) = 0 and ‖h‖W 1,1 ≤ 1 + πn.

This is a non-linear extension of Theorem 6.1.2 since for given f1, . . . , fn ∈
L1([0, 1];C) the map ψ(h) = (

∫ 1

0
fj(x)h(x)dx)j is continuous (see Section 6.2)

and linear, so in particular, ψ satisfies ψ(−h) = −ψ(h). Using the L1-norm is
no restriction; as we show in the next section, the Lp norms on C∞([0, 1];S1)
for 1 ≤ p <∞ are all equivalent, so we could replace L1 with any such Lp. In
fact, the only relevant feature of the L1-norm is that functions h1, h2 are close
in the L1-norm if h1, h2 are uniformly close outside of a set of small measure.
As a consequence, we recover the result of Lazarev and Lieb, with aW 1,1-norm
bound of 1 + 2πn since ψ takes values in Cn ∼= R2n; see Section 6.2 for the
proof:

Corollary 6.1.4. Let f1, . . . , fn ∈ L1([0, 1];C). Then there exists h ∈ C∞([0, 1];
S1)with ‖h‖W 1,1 ≤ 1 + 2πn such that for all j,∫ 1

0

fj(x)h(x)dx = 0.
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Given a space Z with a Z/2-action σ : Z → Z, the largest integer n such
that the n-sphere Sn with the antipodal Z/2-action (i.e. x 7→ −x) admits a
continuous map f : Sn → Z with f(−x) = σ(f(x)) for all x ∈ Sn is called the
Z/2-coindex of Z, denoted coindZ. We show that the coindex of the space of
smooth S1-valued functions in the L1-norm withW 1,1-norm at most 1 + πn
is between n and 2n− 1; see Theorem 6.6.2. Determining the coindex exactly
remains an interesting open problem. Our proof proceeds by constructing Z/2-
maps from Sn, i.e., commuting with the antipodal Z/2-actions, via elementary
obstruction theory, that is, inductively dimension by dimension.

We find it illuminating to phrase our proof using the language of motion
planning algorithms. A motion planning algorithm (mpa) for a space Z is a
continuous choice of connecting path for any two endpoints inZ; see Section 6.3
for details and Farber [3] for an introduction. An mpa for Z exists if and only if
Z is contractible. Here we introduce the notion of (full) lifted mpa, which does
not imply contractibility but is sufficiently strong to establish lower bounds for
the coindex of Z; see Theorem 6.3.5. We refer to Section 6.3 for details.

6.2 Relationship between topologies on C∞([0, 1];S1)

We now make precise our introductory comments about the topologies on
C∞([0, 1];S1) induced by the various Lp-norms. We claimed that “the only
relevant feature of the L1-norm is that functions h1, h2 are close in the L

1-norm
if h1, h2 are uniformly close outside of a set of small measure.” To give content
to this statement, we define a metric d0,∞ on C∞([0, 1];S1) by

d0,∞(h1, h2) = inf{δ > 0 : |h2(x)− h1(x)| < δ for all x ∈ [0, 1] \ S,
for some S ⊆ [0, 1] with µ(S) < δ}.

Proposition 6.2.1. The function d0,∞ is a metric.

Proof. By the continuity of maps in C∞([0, 1];S1), we have d0,∞(h1, h2) = 0 iff
h1 = h2. For the triangle inequality, suppose:

• |h2(x)− h1(x)| < δ1 for all x ∈ [0, 1] \ S1, where µ(S1) < δ1.

• |h3(x)− h2(x)| < δ2 for all x ∈ [0, 1] \ S2, where µ(S2) < δ2

Then |h3(x) − h1(x)| < δ1 + δ2 for all x ∈ [0, 1] \ (S1 ∪ S2), and µ(S1 ∪ S2) <
δ1+δ2. Hence d0,∞(h1, h3) ≤ δ1+δ2. Taking the infimum over δ1, δ2, we obtain
d0,∞(h1, h3) ≤ d0,∞(h1, h2) + d0,∞(h2, h3).

We consider C∞([0, 1];S1) under topologies induced by various norms or
metrics:

Definition 6.2.2. Define spaces Zp, Zp,µ, Z0,∞ as C∞([0, 1];S1), equipped
with the topology induced by the norm or metric indicated in the following
table. (Here µ is a measure on [0, 1]; the notation µ � λ indicates that µ is
absolutely continuous with respect to Lebesgue measure.)
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Name of space Restrictions Norm or metric

Zp 1 ≤ p ≤ ∞ Lp-norm
Zp,µ 1 ≤ p <∞, µ� λ, µ finite Lp-norm w.r.t. µ
Z0,∞ (none) d0,∞ metric

Proposition 6.2.3. The Lp-norms for 1 ≤ p <∞ induce equivalent topolo-
gies on C∞([0, 1];S1).

Proof. Note that ‖h‖p < ∞ for all h ∈ C∞([0, 1];S1), so the identity maps
1p,q : Zp → Zq are well-defined as functions. It suffices to show that 1p,q is
continuous for all p, q ∈ [1,∞).

It is a standard fact that 1p,q is continuous for p ≥ q when the domain has
finite measure, as is the case here for [0, 1]. For p < q, we have

‖h2 − h1‖q =
(∫ 1

0

|h2(x)− h1(x)|qdx
)1/q

≤
(∫ 1

0

|h2(x)− h1(x)|p · (diam(S1))q−pdx

)1/q

≤ (diam(S1))(q−p)/q · ‖h2 − h1‖p/qp

Since S1 is bounded, 1p,q is continuous. Hence the Zp are all homeomorphic.

Proposition 6.2.4. The metric d0,∞ and the L1-norm induce equivalent
topologies on C∞([0, 1];S1).

Proof. It suffices to show that the identity maps between Z0,∞, Z1 are continu-
ous.

For the identity map 1: Z0,∞ → Z1, suppose d0,∞(h1, h2) < δ, so that there
exists S ⊆ [0, 1] with µ(S) < δ such that |h2(x)− h1(x)| < δ on [0, 1] \ S. Then∫ 1

0

|h2(x)− h1(x)|dx ≤
∫
S

diam(S1)dx+

∫
[0,1]\S

δdx ≤ δ(diam(S1) + 1).

This shows that 1: Z0,∞ → Z1 is continuous.
For the identity map 1: Z1 → Z0,∞, let ε > 0 and suppose ‖h2 − h1‖1 < δ

for δ = ε2. If d0,∞(h1, h2) ≥ ε, then |h2(x) − h1(x)| ≥ ε on a set S with
µ(S) ≥ ε, implying ‖h2 − h1‖1 ≥ ε2, a contradiction. Hence d0,∞(h1, h2) < ε,
and 1: Z1 → Z0,∞ is continuous.

We now show that if a finite measure µ is absolutely continuous with respect
to Lebesguemeasure, then µ can only produce coarser topologies than Lebesgue
measure:

Proposition 6.2.5. The identity function 1: Z1 → Z1,µ is continuous.
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Proof. By Proposition 6.2.4, it suffices to show that 1: Z0,∞ → Z1,µ is continu-
ous. The argument is similar to the argument that 1: Z0,∞ → Z1 is continuous.
Using λ to denote Lebesgue measure, suppose d0,∞(h1, h2) < δ, so that there
exists S ⊆ [0, 1] with λ(S) < δ such that |h2(x)− h1(x)| < δ on [0, 1] \ S. Then∫

[0,1]

|h2(x)− h1(x)|dµ ≤
∫
S

diam(S1)dµ+

∫
[0,1]\S

δdµ

≤ diam(S1)µ(S) + δµ([0, 1])

Note that since µ is finite, we have µ([0, 1]) <∞. As δ → 0, we have λ(S) → 0,
so µ(S) → 0 by absolute continuity, hence the right side approaches 0. This
shows the desired continuity.

The relationships between the topologies on C∞([0, 1];S1) can be sum-
marized as follows, where the spaces are as defined in Definition 6.2.2, and
1 < p1 < p2 <∞:

Z∞ Zp2 Zp1 Z1 Z0,∞

Zp2,µ Zp1,µ Z1,µ

6∼= ∼= ∼= ∼=

∼= ∼=

Therefore, when establishing the continuity of ψ for the sake of applying
Theorem 6.1.3, we may use any Lp norm on C∞([0, 1];S1), with respect to
any finite measure µ on [0, 1] which is absolutely continuous with respect to
Lebesgue measure. (If we use a measure µ other than Lebesgue measure, we
can precompose ψ with 1: Z1 → Z1,µ before applying Theorem 6.1.3.)

With these results in hand, we can now deduce Corollary 6.1.4 from Theo-
rem 6.1.3:

Proof of Corollary 6.1.4. Let ψ : C∞([0, 1];S1) → Cn be given by component
maps

ψj : h 7→
∫ 1

0

fj(x)h(x)dx.

We claim ψj is continuous. Since fj ∈ L1([0, 1];C), fj induces a finite measure
µf which is absolutely continuous with respect to Lebesgue measure, given by

µf (S) =

∫ 1

0

|fj(x)|dx.
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By the above, we may view C∞([0, 1];S1) as having the topology induced by the
L1-norm ‖ · ‖1 with respect to µf . Then

|ψj(h2)− ψj(h1)| ≤
∫ 1

0

|fj(x)| · |h2(x)− h1(x)|dx

≤
∫
[0,1]

|h2 − h1|dµf

≤ ‖h2 − h1‖1.

Therefore, ψj is continuous, so ψ is continuous. Viewing the codomain Cn of ψ
as R2n, we may apply Theorem 6.1.3 and get ‖h‖W 1,1 ≤ 1 + 2πn.

6.3 Lifts of motion planning algorithms and the
coindex

Our proof of Theorem 6.1.3 makes use of motion planning algorithms; see
Farber [3]. We use Y, Z in the following definitions to match our notation later:

Definition 6.3.1. Let Z be a topological space, and let PZ be the space of
continuous paths γ : [0, 1] → Z, equipped with the compact-open topology.
Then amotion planning algorithm (ormpa) is a continuous map s : Z × Z →
PZ, such that s(z0, z1)(0) = z0 and s(z0, z1)(1) = z1.

For Z a locally compact Hausdorff space, using the compact-open topology
for PZ ensures that a function s : Z × Z → PZ is continuous if and only if
its uncurried form s̃ : Z × Z × [0, 1] → Z given by (z0, z1, t) 7→ s(z0, z1)(t) is
continuous; see Munkres [7, Thm. 46.11]. One basic fact is that an mpa for Z
exists if and only if Z is contractible [3].

We modify the definition above for our purposes:

Definition 6.3.2. Let Y, Z be topological spaces, and let φ : Y → Z be contin-
uous. Let (�) be a preorder (i.e., a reflexive, transitive binary relation) on Y ,
and let Y 2

� = {(y0, y1) ∈ Y 2 : y0 � y1}, giving Y 2 the product topology and Y 2
�

the resulting subspace topology.
A liftedmotion planning algorithm (or liftedmpa) for (Y, Z, φ,�) is a family

ofmaps sw : Y 2
� → PY forw ∈ (0, 1]with sw(y0, y1)(0) = y0 and sw(y0, y1)(1) =

y1, assembling into a continuous map s : (0, 1]× Y 2
� → PY , with the following

additional continuity property:

For all y ∈ Y and all neighborhoods V of φ(y) ∈ Z,

there exists a neighborhood U of φ(y) ∈ Z and δ > 0 such that:

if φ(y0), φ(y1) ∈ U, w < δ,

then φ(sw(y0, y1)(t)) ∈ V for all t ∈ [0, 1].

Definition 6.3.3. A lifted mpa s : (0, 1]× Y 2
� → PY for (Y, Z, φ,�) is full if

y0 � y1 for all y0, y1 ∈ Y . In this case we say s is a full lifted mpa for (Y, Z, φ),
omitting (�).
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In our applications, the space Z will be a function space of interest (e.g.
C∞([0, 1];S1)), where continuously assigning paths between functions is dif-
ficult. We will obtain Y from Z by replacing the codomain with a covering
space (e.g., C∞([0, 1];R)), so that continuously assigning paths between func-
tions in Y is easier. We will satisfy the continuity requirement by making
sw(g0, g1)(t)(x) equal g0(x) or g1(x) for all x ∈ [0, 1] outside of an interval of
length w. (See Section 6.4 for details.)

In an mpa, paths between nearby points need not remain close to those
points. However, if we are given an mpa s : Z ×Z → PZ with the property that
the paths s(z, z) are constant, we may construct a full lifted mpa for (Z,Z, 1Z)
by taking sw = s for all w; the continuity property just restates the continuity
of s at diagonal points (z, z) ∈ Z × Z.

Whereas the existence of an mpa implies contractibility, the existence of
a lifted mpa yields lower bounds for the (equivariant) topology of Z. Recall
that for a topological space Z with Z/2-action generated by σ : Z → Z the
Z/2-coindex of Z denoted by coindZ is the largest integer n such that there is
a Z/2-map f : Sn → Z, that is, a map satisfying f(−x) = σ(f(x)).

Definition 6.3.4. Let x ∈ Sk, and let x = (x1, . . . , xk+1). We say that x is
positive if its last nonzero coordinate is positive, and negative otherwise.

Our main tool in proving Theorem 6.1.3 will be the following theorem:

Theorem 6.3.5. Let Y, Z be topological spaces, equip Y with a Z-action
generated by ρ : Y → Y , and equip Z with a Z/2-action generated by σ : Z →
Z. Let φ : Y → Z be continuous and equivariant, i.e., σ ◦ φ = φ ◦ ρ. Let (�)
be a preorder on Y and s : (0, 1]× Y 2

� → PY a lifted mpa for (Y, Z, φ,�) such
that:

(1) y � ρ(y).

(2) ρ(y0) � ρ(y1) if and only if y0 � y1.

(3) y0 � y1 implies y0 � sw(y0, y1)(t) � y1, for all w ∈ (0, 1], t ∈ [0, 1].

Then for each integern ≥ 0, there exists aZ/2-mapβn : S
n → Z. Moreover, for

any choice of initial point y∗ ∈ Y , themaps βn can be chosen such that βnmaps
each positive point of Sn to a point in Z of the form φ(y), with y∗ � y � ρn(y∗),
that is, the subspace of these points φ(y) and their antipodes σ(φ(y)) in Z has
coindex at least n.

We will later apply Theorem 6.3.5 by taking Z to be C∞([0, 1];S1) and Y
to be the space of increasing functions in C∞([0, 1];R), both with the L1-norm.
The last part of the theorem will give the desiredW 1,1-norm bound.

Proof of Theorem 6.3.5. We will inductively construct a function αn : S
n → Y

and then take βn = φ ◦αn. We will allow αn to be discontinuous on the equator
of Sn, but in such a way that φ ◦ αn is continuous everywhere.
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Specifically, let αk : S
k → Y be a function, not necessarily continuous. Let

m : Sk → Sk be given by (x1, . . . , xk, xk+1) 7→ (x1, . . . , xk,−xk+1), so that m
mirrors points across the plane perpendicular to the last coordinate axis. Then
we say that αk is good if

(α-1) For x positive, y∗ � αk(x) � ρk(y∗), and αk(−x) = ρ(αk(x)).

(α-2) For x in the open upper hemisphere, αk(x) � αk(m(x)).

(α-3) αk is continuous on the open upper hemisphere.

(α-4) φ ◦ αk is continuous.

Let u, l : Bk+1 → Sk be the projections to the closed upper and lower hemi-
spheres, that is, u(x) is the unique point in the closed upper hemisphere sharing
its first k coordinates with x, and similarly for l(x) for the lower hemisphere.
Then we have the following claim:

Claim 1. If αk : S
k → Y is good, then αk extends to α̃k : B

k+1 → Y , such that:

(α̃-1) For all x ∈ Bk+1, we have y∗ � α̃k(x) � ρk+1(writey∗).

(α̃-2) For all x ∈ Bk+1, we have αk(u(x)) � α̃k(x) � αk(l(x)).

(α̃-3) α̃k is continuous in the interior of Bk+1.

(α̃-4) φ ◦ α̃k is continuous.

Proof of Claim. LetE ⊂ Sk be the equator, the set of points neither in the open
upper or lower hemisphere. The set E is compact, so the distance d(x,E) for
x ∈ Bk+1 is well-defined and nonzero for x /∈ E. Define α̃k : B

k+1 → Xk+1 by

α̃k(x) =

{
αk(x) x ∈ E

sw(x)(αk(u(x)), αk(l(x)))(t(x)) x /∈ E

where w(x) = min(d(x,E), t(x), 1− t(x))

t(x) =
d(u(x), x)

d(u(x), l(x))

Note that l(x) = m(u(x)), so (α-2) implies αk(u(x)) � αk(l(x)), so

sw(x)(αk(u(x)), αk(l(x)))

is well-defined, and (3) gives αk(u(x)) � α̃(x) � αk(l(x)), establishing (α̃-2).
By (α-1), we have ρ(y∗) � ρ(αk(x)) � ρk+1(y∗) for x negative, so y∗ �

αk(x) � ρk+1(y∗) for all x ∈ Sk. Along with the inequality above, this implies
y∗ � α̃k(x) � ρk+1(y∗), establishing (α̃-1).

The function α̃k is continuous for x /∈ E, since u(−), l(−), d(−,−), d(−, E)
are all continuous, u(x), l(x) /∈ E, and αk is continuous on the open upper (and
hence lower) hemisphere. In particular, α̃k is continuous in the interior of
Bk+1, establishing (α̃-3).
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It remains to show φ ◦ α̃k is continuous at x ∈ E. Let V be a neighborhood
of φ(α̃k(x)) = φ(αk(x)) ∈ Z, and obtain δ > 0 and a neighborhood U of
φ(αk(x)) ∈ Z as in the lifted mpa definition. Since u(−), l(−), d(−, E) are
continuous, there exists a neighborhoodW ⊆ Bk+1 of x such that for all x′ ∈W
we have d(x′, E) < δ and u(x′), l(x′) ∈ (φ ◦ αk)−1(U), using the continuity
of φ ◦ αk given by (α-4). Then φ(αk(u(x

′))), φ(αk(l(x
′))) ∈ U , so the lifted

mpa property implies φ(α̃k(x)) ∈ V , which shows φ ◦ α̃k is continuous at x,
establishing (α̃-4).

We use the claim above to inductively construct αk : S
k → Y , by extend-

ing each αk to a map α̃k : B
k+1 → Y , using α̃k for the upper hemisphere of

αk+1, and extending to the negative hemisphere via αk+1(−x) = ρ(αk+1(x)).
Specifically, we have the following claim:

Claim 2. For all k ≥ 0 there exists αk : S
k → Y , not necessarily continuous,

such that αk is good.

Proof of Claim. We use induction. For the base case, use ±1 to denote the
points of S0; then let α0 map ±1 to y∗, ρ(y∗), respectively. Then α0 is good.

Given αk good and α̃k obtained through the previous claim, we now con-
struct αk+1 : S

k+1 → Y . Let π : Sk+1
≥0 → Bk+1 be the projection of the closed

upper hemisphere onto the first k + 1 coordinates. We define maps on the two
closed hemispheres as follows:

(αk+1)≥0 : S
k+1
≥0 → Y x 7→ α̃k(π(x))

(αk+1)≤0 : S
k+1
≤0 → Y x 7→ ρ(α̃k(π(−x)))

Finally, we define αk+1 by x 7→ (αk+1)≥0(x) for x positive and x 7→ (αk+1)≤0(x)
for x negative.

For αk+1, (α-1) holds by construction, due to (α̃-1). Next, since α̃k is contin-
uous in the interior of Bk+1, we have that (αk+1)≥0 is continuous on the open
upper hemisphere, hence αk+1 is also, so (α-3) holds also.

Since α̃k satisfies α̃k(−x) = ρ(α̃k(x)) for positive x on the boundary sphere
Sk ⊂ Bk+1, we have (αk+1)≤0(x) = ρ2((αk+1)≥0(x)) for positive x on the
equator Sk ⊂ Sk+1, and (αk+1)≤0(x) = (αk+1)≥0(x) for negative x on the
equator. Hence φ ◦ (αk+1)≥0, φ ◦ (αk+1)≤0 agree on the equator, since φ ◦ ρ2 =
σ2 ◦ φ = φ. Moreover, both composites are continuous; for the second, we have

φ ◦ (αk+1)≤0 = φ ◦ ρ ◦ α̃k ◦ π ◦ (−) = σ ◦ (φ ◦ α̃k) ◦ π ◦ (−)

and σ, φ ◦ α̃k, π, (−) are continuous. Hence (α-4) holds.
Before showing (α-2), we show that (α̃-2) implies

α̃k(x) � ρ(α̃k(−x))

for all x ∈ Bk+1 not on the equator. For such x, u(−x) is on the open upper
hemisphere and hence is positive. By (α̃-2), we have

α̃k(x) � αk(l(x)) = αk(−u(−x)) = ρ(αk(u(−x))) � ρ(α̃k(−x)).
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This proves the inequality above.
Now we show (α-2). For x ∈ Sk+1 in the open upper hemisphere, we have

αk+1(x) = α̃k(π(x)) � ρ(α̃k(−π(x))) = ρ(α̃k(π(−x))) = αk+1(m(x))

by the inequality above. Hence (α-2) holds.

Taking βn = φ ◦ αn, Theorem 6.3.5 follows from the claims above. To see
that βn is a Z/2-map, note that for x ∈ Sn positive, we have

βn(−x) = φ(αn(−x)) = φ(ρ(αn(x))) = σ(φ(αn(x))) = σ(βn(x))

The other conclusions of the theorem are clear.

For a full lifted mpa, the preorder conditions of Theorem 6.3.5 are trivially
satisfied, so we get:

Corollary 6.3.6. Let Y, Z be topological spaces, equip Y with a Z-action
generated by ρ : Y → Y , and equip Z with a Z/2-action generated by σ : Z →
Z. Let φ : Y → Z be continuous and equivariant, i.e., σ ◦ φ = φ ◦ ρ. If there is
a full lifted mpa for (Y, Z, φ), then there exists a Z/2-map βn : S

n → Z for all
integers n ≥ 0.

6.4 Constructing a lifted mpa

The goal of this section is to prove our main result, Theorem 6.1.3, by construct-
ing a lifted mpa satisfying the conditions of Theorem 6.3.5. As a warm-up, we
use Theorem 6.3.5 to prove the Hobby-Rice theorem, Theorem 6.1.1:

Proof of Theorem 6.1.1. The idea is to lift the space of functions with range in
{±1} to nondecreasing functions with range in Z. By describing a continuous
map from pairs of such functions to paths between them, we will produce a
lifted mpa, which will imply the result by Theorem 6.3.5.

Let Y be the space of nondecreasing functions g : [0, 1] → Z with finite
range, and let Z be the space of functions h : [0, 1] → {±1}. Equip Y, Z with the
L1-norm, and define ρ(g) = g + 1, σ(h) = −h, and

φ(g)(x) =

{
1 g(x) even

−1 g(x) odd

Let g0 � g1 if g0(x) ≤ g1(x) for all x ∈ [0, 1]. Finally, for g0 � g1 define sw(g0, g1)
to be the path (in t) of functions following g0 on [0, 1 − t) and g1 on [1 − t, 1]
(independent of w):

sw(g0, g1)(t)(x) =

{
g0(x) x < 1− t

g1(x) x ≥ 1− t
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This definition gives sw(g0, g1)(0) = g0 and sw(g0, g1)(1) = g1. The conditions
of Theorem 6.3.5 are straightforward to check, except perhaps the continuity
property in the lifted mpa definition, which we check now.

We are given g ∈ Y , and we may assume V is a basis set, so that V consists
of all h ∈ Z with ‖h − φ(g)‖ < ε for some ε > 0. By our choice of U we may
ensure that g0, g1 ∈ Y have the same parity as g except on a sets S0, S1 with
µ(Si) < ε/4. Then functions g′ along the path sw(g0, g1) have the same parity as
g except on S0 ∪ S1, where µ(S0 ∪ S1) < ε/2, which implies ‖φ(g′)− φ(g)‖ < ε.

Hence the conditions of Theorem 6.3.5 are satisfied, so we obtain aZ/2-map
βn : S

n → Z. Applying the Borsuk–Ulam theorem to ψ ◦ βn : Sn → Rn, where
ψ : h 7→ (

∫ 1

0
fj(x)h(x)dx)j , we obtain x ∈ Sn with ψ(βn(x)) = 0. Hence also

ψ(βn(−x)) = 0, so we may assume x is positive. Taking y∗ = 0 in the last part
of Theorem 6.3.5, we may ensure that βn maps each positive point of Sn to
a point in Z of the form φ(g) with 0 ≤ g ≤ n, so that φ(g) has at most n sign
changes.

Now we prove our main result, Theorem 6.1.3:

Proof of Theorem 6.1.3. Consider the space C∞([0, 1];R) with the L1-norm,
and let Y be the subspace of nondecreasing functions inC∞([0, 1];R), equipped
with the action ρ : g 7→ g+π. LetZ beC∞([0, 1];S1)with theL1-norm, equipped
with the action σ : h 7→ −h.

Define φ : Y → Z by φ(g)(x) = eig(x); then φ is continuous since x 7→ eix is
1-Lipschitz:

‖φ(g2)− φ(g1)‖1 =

∫ 1

0

|eig2(x) − eig1(x)|dx

≤
∫ 1

0

|g2(x)− g1(x)|dx

≤ ‖g2 − g1‖1.

Define (�) on Y as (≤) pointwise. Then properties (1) and (2) of Theorem 6.3.5
and the commutativity property φ ◦ ρ = σ ◦ φ evidently hold.

It remains to construct the lifted mpa s. Let τ : R → [0, 1] be a smooth,
nondecreasing function with τ(x) = 0 for x ≤ −1, and τ(x) = 1 for x ≥ 1. (For
example, take an integral of a mollifier.) Then define sw : Y 2

� → PY by

sw(g0, g1)(t)(x) =

(
1− τ

(
x− (1− t)

w

))
g0(x) + τ

(
x− (1− t)

w

)
g1(x).

Since τ is smooth, and sincex 7→ (x−(1−t))/w is smooth forw 6= 0, the function
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sw(g0, g1)(t) : [0, 1] → R is smooth. Also, sw(g0, g1)(t) is nondecreasing:

d

dx
[sw(g0, g1)(t)(x)]

= − 1

w
· τ ′
(
x− (1− t)

w

)
· g0(x) +

(
1− τ

(
x− (1− t)

w

))
· g′0(x)

+
1

w
· τ ′
(
x− (1− t)

w

)
· g1(x) + τ

(
x− (1− t)

w

)
· g′1(x)

≥ 1

w
· τ ′
(
x− (1− t)

w

)
· (g1(x)− g0(x))

≥ 0.

Therefore, sw(g0, g1) takes values in PY . Since g0 ≤ g1, we have

g0 ≤ sw(g0, g1)(t) ≤ g1,

so property (3) of Theorem 6.3.5 holds.
Next we show sw(g0, g1)(t) is continuous in w, g0, g1, t. First we establish

a helpful result. Let B be the subspace of L∞([0, 1];R) consisting of smooth

functions, and let Ỹ be the space L1([0, 1];R), of which Y is a subspace; then

pointwise multiplication (b, g) 7→ b · g defines a continuous map B × Ỹ → Ỹ ,
via the following inequality, using Hölder’s inequality:

‖b2g2 − b1g1‖1 ≤ ‖b2(g2 − g1)‖1 + ‖g1(b2 − b1)‖1
≤ ‖b2‖∞ · ‖g2 − g1‖1 + ‖g1‖1 · ‖b2 − b1‖∞.

Since (w, g0, g1, t) 7→ g0, (w, g0, g1, t) 7→ g1 are continuous maps (0, 1] × Y ×
Y × [0, 1] → Y , by the result above it suffices to show that

(w, g0, g1, t) 7→
(
x 7→ τ

(
x− (1− t)

w

))
is a continuous map to B; the subtraction from 1 in the first term is handled
by virtue of the fact that B is a normed linear space, so that pointwise addition
and scalar multiplication by −1 each define a continuous map.

Since τ is constant outside of the compact set [−1, 1], τ is uniformly contin-
uous, hence it suffices to prove that

(w, g0, g1, t) 7→
(
x 7→ x− (1− t)

w

)
is a continuous map to B. Note that

sup
x∈[0,1]

∣∣∣∣ xw2
− x

w1

∣∣∣∣ = ∣∣∣∣ 1w2
− 1

w1

∣∣∣∣
Since w 7→ 1/w is a continuous map R \ {0} → R, the map (w, g0, g1, t) 7→ (x 7→
x/w) is a continuous map to B, as is (w, g0, g1, t) 7→ (x 7→ −(1− t)/w), so the
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map above is indeed a continuous map to B. Hence sw(g0, g1)(t) is continuous
in w, g0, g1, t.

It remains to show the continuity property for a lifted mpa. Let g ∈ Y , then
for g0, g1 ∈ Y we have

‖φ(sw(g0, g1)(t))− φ(g)‖1

=

∫ 1−t−w

0

|φ(g0)(x)− φ(g)(x)|dx+

∫ 1

1−t+w
|φ(g1)(x)− φ(g)(x)|dx

+

∫ 1−t+w

1−t−w
|φ(sw(g0, g1)(t))(x)− φ(g)(x)|dx

≤ ‖φ(g0)− φ(g)‖1 + ‖φ(g1)− φ(g)‖1 + 4w,

where we use the fact that S1 has diameter 2 in the last step. This inequality
implies the continuity property for a lifted mpa.

Therefore, we may apply Theorem 6.3.5 to obtain a Z/2-map βn : S
n → Z.

Then ψ ◦ βn : Sn → Rn is a Z/2-map, so by the Borsuk–Ulam theorem, we have
ψ(βn(x)) = 0 for some x ∈ Sn, and wemay assume x is positive. Taking y∗ = c0
in the last part of Theorem 6.3.5, we have ρn(y∗) = cn, so we may ensure that
h = βn(x) is of the form φ(g) for g ∈ Y , where g is an increasing function with
range in [0, πn]. This gives the desiredW 1,1-norm bound:∫ 1

0

∣∣∣∣ ddx [eig(x)]
∣∣∣∣ dx =

∫ 1

0

|g′(x)|dx = g(1)− g(0) ≤ πn,

which implies ‖h‖W 1,1 ≤ 1 + πn.

6.5 Improving the bound further

In the introduction we argued that a W 1,1-norm bound of 1 + 2πn in Theo-
rem 6.1.2 might be expected from smoothing the Hobby–Rice theorem. In this
section, we show an improved bound for Theorem 6.1.2 in the case where the
fj are real-valued. The idea is to modify the S1 step of our construction so
that some functions in the image of αk have smaller range within [0, πk], and to
modify the later steps so that functions h in the image of αk with large range
have ψ(φ(h)) 6= 0.

Theorem 6.5.1. Let f1, . . . , fn ∈ L1([0, 1];R). Then there exists h ∈ C∞([0, 1];
S1) such that for all j, ∫ 1

0

fj(x)h(x)dx = 0.

Moreover, for any ε > 0, h can be chosen such that

‖h‖W 1,1 < 1 + π(2n− 1) + ε.
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Proof. Define Y, Z, ρ, σ, φ, s as in the proof of Theorem 6.1.3, let y∗ = c0, and
let (�) be (≤). We will produce αn : S

n → Y and βn : S
n → Z by the inductive

construction in the proof of Theorem 6.3.5, but we modify the first step by
defining α1 : S

1 → Y by eix 7→ cx for x ∈ [0, 2π). This α1 differs from the α1

obtained in the proof of Theorem 6.3.5, which only gives constant functions at
±1 ∈ S1, but is still good in the sense introduced in the proof of Theorem 6.3.5.
Using this α1 as our base case, we inductively construct αk as before with the
following additional condition:

For δ > 0 (depending on k and the fj), αk may be chosen such that for all x:

Re[eiαk(x)(t)] = π1(x) for t ∈ [0, 1] \ S, where µf (S) < δ (Pαk,δ)

Here µf is as in the proof of Corollary 6.1.4, that is,

µf (S) =

∫ 1

0

|fj(x)|dx,

and π1 : S
k → [−1, 1] is the projection to the first coordinate.

The condition (Pαk,δ) holds for k = 1 and all δ > 0 by our definition of α1.
To show that the condition carries through the inductive step, it suffices to show
that given δ > 0, there exists δ′ > 0 such that given αk such that (Pαk,δ′) holds,
we can extend αk to α̃k as in the first claim in the proof of Theorem 6.3.5 such
that (Pα̃k,δ) holds.

We accomplish this by modifying the definition of α̃k in the first claim in the
proof of Theorem 6.3.5 to impose a universal upper bound on w(x). Since µf
is absolutely continuous with respect to Lebesgue measure λ, for δ′′ > 0 there
exists δ′′′ > 0 such that λ(S) ≤ 2δ′′′ implies µf (S) < δ′′. Then we use δ′′′ as our
upper bound on w(x):

α̃k(x) =

{
αk(x) x ∈ E

sw(x)(αk(u(x)), αk(l(x)))(t(x)) x /∈ E

where w(x) = min(d(x,E), t(x), 1− t(x), δ′′′)

t(x) =
d(u(x), x)

d(u(x), l(x))

This ensures that functions in the image of α̃k are equal to one of the functions
αk(u(x)), αk(l(x)) except on a set S with µf (S) < δ′′. Hence we may take
δ′ = δ′′ = δ/2; then (Pα̃k

, δ) holds as desired. This shows that for any δ > 0, αk
may be chosen such that (Pαk,δ) holds.

Now we apply the Borsuk–Ulam theorem as before. We have the following
diagram:

S2n φ◦α2n−−−−→
(Z/2)

Z
ψ−−−→

(Z/2)
Cn

The composition ψ ◦φ◦α2n is a Z/2-map, so the Borsuk–Ulam theorem implies
that it has a zero; that is, there exists x ∈ S2n such that for all j, we have∫ 1

0

fj(t)e
iα2n(x)(t)dt = 0.
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Moreover, we may assume x ∈ S2n is positive.
But by the above, we have for the real parts, for all j,

<
[∫ 1

0

fj(t)e
iα2n(x)(t)dt

]
=

∫ 1

0

fj(t) · <[eiα2n(x)(t)]dt

= π1(x) ·
∫ 1

0

fj(t)dt+

∫
S

fj(t)(<[eiα2n(x)(t)]− π1(x))dx.

We can bound the last term as follows:∣∣∣∣∫
S

fj(t)(<[eiα2n(x)(t)]− π1(x))dx

∣∣∣∣ ≤ ∫
S

|<[eiα2n(x)(t)]− π1(x)|dµf

≤ 2µf (S).

Now if all
∫ 1

0
fj(t)dt are 0, then we may take h to be an arbitrary constant,

which gives ‖h‖W 1,1 = 1. Hence wemay assume that some
∫ 1

0
fj(t)dt is nonzero.

In this case, we may ensure that for the x with (ψ ◦ φ ◦ α2n)(x) = 0 guaranteed
by the Borsuk–Ulam theorem, π1(x) is smaller than any constant we like, by
taking δ small in (Pα2n,δ). In particular, choose δ sufficiently small such that
|<[eiθ]| < δ implies |θ − π/2| < ε′ for θ ∈ [0, π].

Now we analyze the ranges of functions αk(x) : [0, 1] → R with x positive
and |π1(x)| < δ, using the fact that functions αk+1(x) are produced as transition
functions between two functions αk(x

′), αk(x
′′) with π1(x

′) = π1(x
′′) = π1(x).

For k = 1, αk(x) has range in [π/2 − ε′, π/2 + ε′], and each increment of k
extends the right end of this interval by π. Hence α2n(x) has range in

[π/2− ε′, π/2 + π(2n− 1) + ε′].

Hence taking h = φ(α2n(x)) gives ‖h‖W 1,1 ≤ 1 + π(2n − 1) + 2ε′. Choosing
ε′ < ε/2 gives the desired result.

6.6 A lower bound

We ask whether ‖h‖W 1,1 ≤ 1+ 2nπ is the best possible bound in Theorem 6.1.2.
We prove a lower bound of 1 + nπ in the case that the fj are real-valued, which
implies the same lower bound in the case that the fj are complex-valued.

Theorem 6.6.1. There exist f1, . . . , fn ∈ L1([0, 1];R), such that for any h ∈
C1([0, 1];S1)with ∫ 1

0

fj(x)h(x)dx = 0 j = 1, . . . , n

we have ‖h‖W 1,1 > πn+ 1.
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Proof. Consider the case n = 1, and take f1 constant and nonzero. Suppose for
contradiction that ‖h‖W 1,1 ≤ π+1, and write h(x) as eig(x) for g ∈ C1([0, 1];R),
so that

∫ 1

0
|g′(x)|dx ≤ π. Since g is continuous, g attains its minimumm and

maximumM on [0, 1]. By adding a constant to g, we may assumem = 0; then
we haveM ≤ π.

Since f1 is constant, we have
∫ 1

0
h(x)dx = 0, so

∫ 1

0
Im(h(x))dx = 0. But

Im(h(x)) is continuous in x and nonnegative, so Im(h(x)) = 0 for all x. Hence

h is constant at either 1 or −1, but this contradicts
∫ 1

0
h(x)dx = 0. Therefore,

‖h‖W 1,1 > π + 1 for n = 1.
Now allow n arbitrary, and take each fj to be the indicator function on a

disjoint interval Ij . If ‖h‖W 1,1 ≤ πn+ 1, then
∫
Ij
|g′(x)|dx ≤ π for some j, and

we obtain a contradiction as above. Therefore, ‖h‖W 1,1 > πn+ 1.

ThisW 1,1-norm bound establishes an upper bound for the coindex of the
space of smooth circle-valued functions with norm at most 1 + πn:

Theorem 6.6.2. For integer n ≥ 1 let Yn denote the space of C
∞-functions

f : [0, 1] → S1 with ‖f‖W 1,1 ≤ 1 + πn. Then

n ≤ coindYn ≤ 2n− 1.

Proof. In the proof of Theorem 6.1.3 we constructed a Z/2-map βn : S
n → Yn,

which shows that coindYn ≥ n. Let f1, . . . , fn be chosen as in Theorem 6.6.1.

Then the map ψ : Yn → R2n given by ψ(h) = (
∫ 1

0
fj(x)h(x)dx)j has no zero and

is a Z/2-map. Thus ψ radially projects to a Z/2-map Yn → S2n−1. A Z/2-map
S2n → Yn would compose with ψ to a Z/2-map S2n → S2n−1, contradicting
the Borsuk–Ulam theorem. This implies coindYn ≤ 2n− 1.

Problem 6.6.3. Determine the homotopy type of Yn.
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