CS342: Bioinformatics
Lecture /

Greedy Algorithms

* Def: Algorithms that make locally optimal choices using a metric with
the hope of finding a globally optimal solution.

* Example: Making change with US coins.

* Optimization Problem: Given an input, compute a solution, subject to
various constraints, that either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest
value that does not take us past the amount to be paid.

Sort coins denominations by value: c; < ¢, < .. < ¢c,.

coins selected

S « ¢
while (x # 0) {
let k be largest integer such that ¢, < x
if (k = 0)
return "no solution found"
X ¢« X - ¢
S «< S U {k}
}

return S

Greedy Motif Search

GreedyMotifSearch(DNA, k, t)

BestMotifs <« empty motif list
BestScore « t * Kk

for each k-mer Motif in the first string from DNA
Motifl « Motif
for 1 =2 to t
form Profile from motifs Motifl, .., Motifi - 1
Motifi « Profile-most probable k-mer in the i-th string in DNA
Motifs « (Motifl, .., Motift)
if Score(Motifs) < BestScore:
BestMotifs « Motifs
BestScore « Score(Motifs)
return BestMotifs

A Serious Scientific Problem ...

Differences between species?

* Some are obviously similar...
 Some are obviously different...

* Some are close calls...

 The differences that matter are in the
genes!

* And the gene order is important!

Genome Rearrangements

Human chromosomes

* Humans and mice have similar f a2 a4 s
genomes, but their genes are I H H H H : I
ordered differently

e ~245 rearrangements I I I H

e ~ 300 large synteny blocks S

| @

{b) Arrangement of human and mouse synteny blocks

- Mouse chromosomes
N 1 - 5 & T a L]
= 1=
a8 a 7
H] 5
- a 7 3 a
® 2 2 @ 4 1 13
= a 2 5
n 14 % 18
¥ 5 1 A
- 7 13 15
= 4 15 = b\ '
EE
E_ 10 }<] 14 15 16 17 <]
2 = 3 16 1
o & b 5 &
. 7 - - o 2z 5]
. 5 14 a =5 1
= 1 a 22 S
. k] 1 1 1B
= 5 13 13 =
i|%
= 19 x w
S
a
o 4
[+

|-- i:_ -j- 4. 5 -B. .:'_”B] m. |-| .|:. .|; " ;i 'H”I.:' ;ﬁu‘a:nmi x

Genome Rearrangements

Unknown ancestor

~ 75 million years ago Mouse (X chrom.)

— ———-———-— —Cn—a———

— - > — — > —
Human (X chrom.)

 What are the similarity blocks and how to find them?
 What is the architecture of the ancestral genome?

* What is the evolutionary scenario for transforming one
genome into the other?

History of Chromosome X

Rat Consortium, Nature, 2004

Placental Ancestor

e e o RSS2 r——
e L Yo Domagd
-—L") —

Rearrangement
Events:
*Reversals
*Fusions
*Fissions
*Translocation

(O 4 O O
(X CRTX IR0 X D)
@OLIIEDIDRD)
OO IDID

CDIN PHOND
(ST LY (T)

(I YT ISR XY)

O DD

Mouse

http://www.cs.unc.edu/~mcmillan/

Reversals

12345678910

* Blocks represent conserved genes.

* Reversals, or inversions, are particularly relevant to
speciation. Recombinations cannot occur between
reversed and normally ordered segments.

Reversals

12387654910

® Blocks represent conserved genes.

® [n the course of evolution or in a clinical context,
blocks 1 ... 10 could be reordered
as1 23876549 10.

10

Reversals and Breakpoints
1 2 3

12387654910

The inversion introduced two breakpoints =X
(disruptions in order).

11

Reversals and Gene Orders

* Gene order can be represented by a permutation
-

7T :72'1...72'i_172'i72'i+1... 7Z'j_17z'j7z'j+1... 7Z'n

p (1))

Ty e Wi g g e iy T Wjgg oo 7oy

e Reversal p (i, j) reverses (flips) the elements from
itojinrx

12

Reversals: Example

pG.5) |
12543678
p(5,6) l

12546378

13

“Reversal Distance” Problem

* Goal: Given two permutations over n elements, find the shortest series
of reversals that transforms one into another

* |nput: Permutations zand o

* Output: A series of reversals p,,...po, transforming zinto o, such that tis
minimum

 t - reversal distance between 7w and o (# of reversals)
* d(7, o) - smallest possible value of t, given rand o

14

“Sorting By Reversals” Problem

A simplified restatement of the same problem....

e Goal: Given a permutation, find a shortest series of reversals that
transforms it into the identity permutation (1 2 ... n)

* Input: Permutation

* Qutput: A series of reversals p,, ... p, transforming zwinto the identity
permutation such that tis minimum

 t=d(x) - reversal distance of

15

Sorting By Reversals: Example

n=3421567 1098

4321567109 8
56 7 8 910

56 7 8 910

diz)=3

16

Sorting by Reversals: 4 flips

Step0: 2 4 3 58761
Stepl: 2 3 458761
Step2: 2 3 456 7 81
Step3: 8 7 6 54 3 21
Step4:. 1 2 3 456 7 8
What is the reversal distance for this
permutation?

Can it be sorted in 3 flips?
How can we know?

17

Sorting By Reversals: A Greedy Algorithm

* If sorting permutation 7=12 3 6 45, the first three
elements are already in order so it does not make any
sense to break them apart.

* The length of the already sorted prefix of 7 is denoted
prefix()
e prefix(n) =3
* This results in an idea for a greedy algorithm: increase
prefix(n7) at every step

18

Sort by Reversals: An Example

* Doing so, £ can be sorted
This reminds me of
selection sort
123645

O

O
opo

123465 4

6

1234560

* Number of steps to sort permutation of length n is
at most (n—1)

19

Greedy Algorithm

SimpleReversalSort(z)
] for i€ 1lton-1

if 7is the identity permutation
return

2] € position of elementiin 7 (i.e., 5, =1)
3 if j#

4 RS A (W)

5 output =

6

V4

20

Analyzing SimpleReversalSort

e SimpleReversalSort does not guarantee the smallest
number of reversals and takes five steps on
7=612345:

Flip1: 162345
Flip2: 126345
Flip3: 123645
Flip4: 123465
Flip5: 123456

Analyzing SimpleReversalSort

e But it can be sorted in two flips:
7 =612345
Flip1: 543216
Flip2: 123456

* So, SimpleReversalSort(x) is not optimal

* Optimal algorithms are unknown for many problems;
approximation algorithms are used

22

Approximation Algorithms

* Find approximate solutions rather than optimal
solutions

* The approximation ratio of an algorithm 4 on input 7
IS:

A(7z) / OPT(n)
where

A(n) - solution produced by algorithm 4
OPT(x) - optimal solution of the problem

23

Approximation Ratio/Performance Guarantee

* Approximation ratio (performance guarantee) of algorithm _4: max
approximation ratio over all inputs of size n

* For a minimizing algorithm 4 (like ours):
* Approx Ratio = max, _ , A(n) / OPT(n) = 1.0

* For maximization algorithms:
* Approx Ratio = min,, _, A(x) / OPT(n) < 1.0

24

Approximation Ratio

SimpleReversalSort(z)

1 for i< l1ton-1

2 j € position of elementiin 7 (i.e., 7 =1)
3 if j#

4 &< o))
5 output
6

7/

if 7is the identity permutation
return

Step 0: 612345 Step0:612345
Step1: 162345 Stepl1:543216
Step2: 126345 Step2:123456
Step3:123645
Step4:1 23465
Step5:1 23456

approximation
ratio?

O at least

o T (D)2

any better
greedy
algorithms?

25

