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Greedy Algorithms

• Def: Algorithms that make locally optimal choices using a metric with 
the hope of finding a globally optimal solution.

• Example: Making change with US coins.

• Optimization Problem: Given an input, compute a solution, subject to 
various constraints, that either minimizes cost or maximizes profit.



Coin-Changing:  Greedy Algorithm
Cashier's algorithm.  At each iteration, add coin of the largest 
value that does not take us past the amount to be paid.

Sort coins denominations by value: c1 < c2 < … < cn.

S  

while (x  0) {

let k be largest integer such that ck  x

if (k = 0)

return "no solution found"

x  x - ck
S  S  {k}

}

return S

coins selected 
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Greedy Motif Search
GreedyMotifSearch(DNA, k, t)

BestMotifs ← empty motif list
BestScore ← t * k 

for each k-mer Motif in the first string from DNA

Motif1 ← Motif

for i = 2 to t

form Profile from motifs Motif1, …, Motifi – 1 

Motifi ← Profile-most probable k-mer in the i-th string in DNA

Motifs ← (Motif1, …, Motift)

if Score(Motifs) < BestScore:

BestMotifs ← Motifs

BestScore ← Score(Motifs)

return BestMotifs
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A Serious Scientific Problem …

• Some are obviously similar…

• Some are obviously different…

• Some are close calls…

• The differences that matter are in the 
genes!

• And the gene order is important!

Differences between species?
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Genome Rearrangements

• Humans and mice have similar 
genomes, but their genes are 
ordered differently

• ~245 rearrangements

• ~ 300 large synteny blocks
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• What are the similarity blocks and how to find them?

• What is the architecture of the ancestral genome?

• What is the evolutionary scenario for transforming one 
genome into the other?

Mouse (X chrom.)

Human (X chrom.)

Genome Rearrangements

Unknown ancestor

~ 75 million years ago



8

History of Chromosome X
Rat Consortium, Nature, 2004

Rearrangement 

Events:

•Reversals

•Fusions

•Fissions

•Translocation

http://www.cs.unc.edu/~mcmillan/
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Reversals

• Blocks represent conserved genes.

• Reversals, or inversions, are particularly relevant to 
speciation. Recombinations cannot occur between 
reversed and normally ordered segments. 
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Reversals
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1  2  3  8  7  6  5  4  9  10

• Blocks represent conserved genes.

• In the course of evolution or in a clinical context, 
blocks 1 … 10 could be reordered 
as 1  2  3  8  7  6  5  4  9  10.
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Reversals and Breakpoints
1 32

4

10

5
6

8

9

7

1  2  3  8  7  6  5  4  9  10

The inversion introduced two breakpoints
(disruptions in order).
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Reversals and Gene Orders

• Gene order can be represented by a permutation 
p: 

p   = p 1  p i-1 p i p i+1  p j-1 p j p j+1  p n

p 1  p i-1 p j p j-1  p i+1 p i p j+1  pn

⚫ Reversal r ( i, j ) reverses (flips) the elements from 
i to j in p

r (i,j)
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Reversals: Example

p = 1 2 3 4 5 6 7 8                 

r (3,5)

1 2 5 4 3 6 7 8

r (5,6)

1 2 5 4 6 3 7 8
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“Reversal Distance” Problem

• Goal: Given two permutations over n elements, find the shortest series 
of reversals that transforms one into another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p into s, such that t is 
minimum

• t - reversal distance between p and s (# of reversals)

• d(p, s) - smallest possible value of t, given p and s
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“Sorting By Reversals” Problem

• Goal: Given a permutation, find a shortest series of reversals that 
transforms it into the identity permutation (1 2 … n) 

• Input: Permutation p

• Output: A series of reversals r1, … rt transforming p into the identity 
permutation such that t is minimum

• t =d(p ) - reversal distance of p

A simplified restatement of the same problem….
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Sorting By Reversals: Example

d(p ) = 3

4  3 2  1  5  6  7  10  9  8

p =  3  4 2  1  5  6  7  10  9  8

4  3  2  1 5  6  7   8   9 10

1  2  3  4 5  6  7   8   9 10
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Sorting by Reversals: 4 flips

Step 0: 2 4 3 5 8 7 6 1

Step 1: 2 3 4 5 8 7 6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 8 7 6 5 4 3 2 1

Step 4: 1 2 3 4 5 6 7 8

What is the reversal distance for this 
permutation? 
Can it be sorted in 3 flips? 
How can we know?
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Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first three 
elements are already in order so it does not make any 
sense to break them apart. 

• The length of the already sorted prefix of p is denoted 
prefix(p)

• prefix(p) = 3

• This results in an idea for a greedy algorithm: increase 
prefix(p) at every step
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• Doing so, p can be sorted

1 2 3 6 4 5 

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of length n is 
at most (n – 1)

Sort by Reversals: An Example

This reminds me of 
selection sort 
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Greedy Algorithm

SimpleReversalSort(p)
1 for i  1 to n – 1
2 j  position of element i in p (i.e., pj = i)
3    if j ≠i
4       p  p r(i, j)
5       output p
6    if p is the identity permutation 
7       return
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Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the smallest 
number of reversals and takes five steps on  
p = 6 1 2 3 4 5 :

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5 

Flip 3: 1 2 3 6 4 5
Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6
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• But it can be sorted in two flips:
p =  6 1 2 3 4 5

Flip 1:  5 4 3 2 1 6     

Flip 2:  1 2 3 4 5 6

• So, SimpleReversalSort(p) is not optimal

• Optimal algorithms are unknown for many problems; 
approximation algorithms are used

Analyzing SimpleReversalSort
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Approximation Algorithms

• Find approximate solutions rather than optimal 
solutions

• The approximation ratio of an algorithm A on input p
is:

A(p) / OPT(p)

where 

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem
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Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of algorithm A: max 
approximation ratio over all inputs of size n

• For a minimizing algorithm A (like ours):
• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

• For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0
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Approximation Ratio
SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3    if j ≠i

4       p  p r(i, j)

5       output p

6    if p is the identity permutation 

7       return

approximation 

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5 

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least 
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better 

greedy 
algorithms?


