
CS342: Bioinformatics
Lecture 7

2

Greedy Algorithms

• Def: Algorithms that make locally optimal choices using a metric with
the hope of finding a globally optimal solution.

• Example: Making change with US coins.

• Optimization Problem: Given an input, compute a solution, subject to
various constraints, that either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm
Cashier's algorithm. At each iteration, add coin of the largest
value that does not take us past the amount to be paid.

Sort coins denominations by value: c1 < c2 < … < cn.

S  

while (x  0) {

let k be largest integer such that ck  x

if (k = 0)

return "no solution found"

x  x - ck
S  S  {k}

}

return S

coins selected

3

Greedy Motif Search
GreedyMotifSearch(DNA, k, t)

BestMotifs ← empty motif list
BestScore ← t * k

for each k-mer Motif in the first string from DNA

Motif1 ← Motif

for i = 2 to t

form Profile from motifs Motif1, …, Motifi – 1

Motifi ← Profile-most probable k-mer in the i-th string in DNA

Motifs ← (Motif1, …, Motift)

if Score(Motifs) < BestScore:

BestMotifs ← Motifs

BestScore ← Score(Motifs)

return BestMotifs

5

A Serious Scientific Problem …

• Some are obviously similar…

• Some are obviously different…

• Some are close calls…

• The differences that matter are in the
genes!

• And the gene order is important!

Differences between species?

6

Genome Rearrangements

• Humans and mice have similar
genomes, but their genes are
ordered differently

• ~245 rearrangements

• ~ 300 large synteny blocks

7

• What are the similarity blocks and how to find them?

• What is the architecture of the ancestral genome?

• What is the evolutionary scenario for transforming one
genome into the other?

Mouse (X chrom.)

Human (X chrom.)

Genome Rearrangements

Unknown ancestor

~ 75 million years ago

8

History of Chromosome X
Rat Consortium, Nature, 2004

Rearrangement

Events:

•Reversals

•Fusions

•Fissions

•Translocation

http://www.cs.unc.edu/~mcmillan/

9

Reversals

• Blocks represent conserved genes.

• Reversals, or inversions, are particularly relevant to
speciation. Recombinations cannot occur between
reversed and normally ordered segments.

1 32

4

10

5
6

8

9

7

1 2 3 4 5 6 7 8 9 10

10

Reversals
1 32

4

10

5
6

8

9

7

1 2 3 8 7 6 5 4 9 10

• Blocks represent conserved genes.

• In the course of evolution or in a clinical context,
blocks 1 … 10 could be reordered
as 1 2 3 8 7 6 5 4 9 10.

11

Reversals and Breakpoints
1 32

4

10

5
6

8

9

7

1 2 3 8 7 6 5 4 9 10

The inversion introduced two breakpoints
(disruptions in order).

12

Reversals and Gene Orders

• Gene order can be represented by a permutation
p:

p = p 1  p i-1 p i p i+1  p j-1 p j p j+1  p n

p 1  p i-1 p j p j-1  p i+1 p i p j+1  pn

⚫ Reversal r (i, j) reverses (flips) the elements from
i to j in p

r (i,j)

13

Reversals: Example

p = 1 2 3 4 5 6 7 8

r (3,5)

1 2 5 4 3 6 7 8

r (5,6)

1 2 5 4 6 3 7 8

14

“Reversal Distance” Problem

• Goal: Given two permutations over n elements, find the shortest series
of reversals that transforms one into another

• Input: Permutations p and s

• Output: A series of reversals r1,…rt transforming p into s, such that t is
minimum

• t - reversal distance between p and s (# of reversals)

• d(p, s) - smallest possible value of t, given p and s

15

“Sorting By Reversals” Problem

• Goal: Given a permutation, find a shortest series of reversals that
transforms it into the identity permutation (1 2 … n)

• Input: Permutation p

• Output: A series of reversals r1, … rt transforming p into the identity
permutation such that t is minimum

• t =d(p) - reversal distance of p

A simplified restatement of the same problem….

16

Sorting By Reversals: Example

d(p) = 3

4 3 2 1 5 6 7 10 9 8

p = 3 4 2 1 5 6 7 10 9 8

4 3 2 1 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

17

Sorting by Reversals: 4 flips

Step 0: 2 4 3 5 8 7 6 1

Step 1: 2 3 4 5 8 7 6 1

Step 2: 2 3 4 5 6 7 8 1

Step 3: 8 7 6 5 4 3 2 1

Step 4: 1 2 3 4 5 6 7 8

What is the reversal distance for this
permutation?
Can it be sorted in 3 flips?
How can we know?

18

Sorting By Reversals: A Greedy Algorithm

• If sorting permutation p = 1 2 3 6 4 5, the first three
elements are already in order so it does not make any
sense to break them apart.

• The length of the already sorted prefix of p is denoted
prefix(p)

• prefix(p) = 3

• This results in an idea for a greedy algorithm: increase
prefix(p) at every step

19

• Doing so, p can be sorted

1 2 3 6 4 5

1 2 3 4 6 5

1 2 3 4 5 6

• Number of steps to sort permutation of length n is
at most (n – 1)

Sort by Reversals: An Example

This reminds me of
selection sort

20

Greedy Algorithm

SimpleReversalSort(p)
1 for i  1 to n – 1
2 j  position of element i in p (i.e., pj = i)
3 if j ≠i
4 p  p r(i, j)
5 output p
6 if p is the identity permutation
7 return

21

Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the smallest
number of reversals and takes five steps on
p = 6 1 2 3 4 5 :

Flip 1: 1 6 2 3 4 5

Flip 2: 1 2 6 3 4 5

Flip 3: 1 2 3 6 4 5
Flip 4: 1 2 3 4 6 5

Flip 5: 1 2 3 4 5 6

22

• But it can be sorted in two flips:
p = 6 1 2 3 4 5

Flip 1: 5 4 3 2 1 6

Flip 2: 1 2 3 4 5 6

• So, SimpleReversalSort(p) is not optimal

• Optimal algorithms are unknown for many problems;
approximation algorithms are used

Analyzing SimpleReversalSort

23

Approximation Algorithms

• Find approximate solutions rather than optimal
solutions

• The approximation ratio of an algorithm A on input p
is:

A(p) / OPT(p)

where

A(p) - solution produced by algorithm A
OPT(p) - optimal solution of the problem

24

Approximation Ratio/Performance Guarantee

• Approximation ratio (performance guarantee) of algorithm A: max
approximation ratio over all inputs of size n

• For a minimizing algorithm A (like ours):
• Approx Ratio = max|p| = n A(p) / OPT(p) ≥ 1.0

• For maximization algorithms:
• Approx Ratio = min|p| = n A(p) / OPT(p) ≤ 1.0

25

Approximation Ratio
SimpleReversalSort(p)

1 for i  1 to n – 1

2 j  position of element i in p (i.e., pj = i)

3 if j ≠i

4 p  p r(i, j)

5 output p

6 if p is the identity permutation

7 return

approximation

ratio?

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

at least
(n-1)/2

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
any better

greedy
algorithms?

