CS 342: Bioinformatics
HWG6 - Assembly Programming Project - Part 2 Spring 2020

Note: This is part two of a two part assignment. You will use the code you developed
for part one of this assignment, however, the main deliverable for this assignment will be a
short paper (although you will still turn in your code as well). This assignment is due by
11:55pm on Mon, April 13. This part of the assignment is worth 20 points. If you choose,
you may work with a partner on this assignment. You must submit your short paper and any
other requested files as a zip file to Moodle.

1 Project Overview

In this project we will explore the process of genome assembly. Genome assembly of real DNA se-
quencing data is still a challenging area where many researchers are currently working. In partic-
ular, this will be a reflective assignment where your task is to use your De Bruijn graph code
to build an assembler. Your job is to reflect on what you try and why it does or doesn’t work.
Your job is NOT to build a great assembler (a very challenging task. In fact, no part of your
grade is dependent on how well your assembler does.

As an overview, in part two of this assignment you will do the following;:

¢ You will modify your existing De Bruijn code to also produce an assembly and report the
N50 and L50 scores for that assembly.

e You will write a short 3 page paper describing what you tried and why it did or didn’t
work well when creating an assembly. The majority of points for this assignment will be
dedicated to this paper.

De Bruijn Starting Code

I expect that students will start work from the code they submitted for HW5. If you had issues
with your HW5 code you have two options. (1) Talk to me early and I can help you to resolve
the issues. (2) Request (via Slack) that I send you my code (written in Python) for HW5. You
can use this code as your starting point.

Any data files mentioned below can be downloaded from Moodle: HW6 Files. This di-
rectory also contains examples of any file formats mentioned below. Lastly, please read this
whole document carefully before beginning.

2 Project Specifications

Important: T do NOT expect you to be able to assemble “full size” genomes as that would
require more RAM than is available on most personal machines. You should be able to handle
data created for the sample.fasta file provided.

2.1 Assembler Specifications

You will need to provide the following Python script: assemble.py that constructs a De Bruijn
Graph from a set DNA sequencing reads and then uses that graph to create an assembly which
will be saved in a filed called contigs.txt.

assemble.py will take in the following parameters (in this order):

e Reads file (string) - A file of reads, as output by simulate.py.

Page 1

CS 342: Bioinformatics
HWG6 - Assembly Programming Project - Part 2 Spring 2020

e k (int) - the size of k-mer to use when building a De Bruijn graph.

assemble.py will construct a de Bruijn graph for the specified k-mer size from the set of reads
contained in the supplied reads.txt file and then use this graph to produce an assembly (set
of contigs). More specifically, your code should complete the following tasks.

e The program will create a file in the current directory called contigs.txt. Each line of
the file will contain the sequence of an assembled contig. This file should look like the
following (see the data directory for an example file) which shows 3 contigs.

TAGCACCACTTCTGCGACCCAAGTTG
TCCGATCCTATATTACGACTTCGGGAAGGGGTTCGCAAGTCCCACCCTAAACGATGTTGAAGGCTCAGG
TTACACAGGCACAAGTACTATATATACGTGT

e Your code should print to the screen only the N50 and L50 scores for the produced
assembly. Please no longer print the size of the De Bruijn graph in the code you submit.
For example, the output of your program may look like the following.

$ python assemble.py reads.txt 3

N50 for assembly: 6
L50 for assembly: 2

2.2 How to Design an Assembler?

How you choose to design your assembler is completely up to you as long as it follows the
exact specifications outlined in the previous section. For example, the most naive assembler
would just return the exact set of reads that were given as input. According to our definition of
assembly, this is a valid assembly. Here are a few suggestions of ways you might get inspiration:

1. Look back the class notes. We briefly talked about a lot of approaches you could try
to dig into more deeply. You could try to find the closest thing to an Eulerian path in the
grap. You could do some graph modifications first that might help. You could just try to
string reads together in the graph. These are all ideas, but none of them are required.

2. Read a paper for inspiration.. You are more that welcome to look at what other
people have done and to use this as inspiration. If you do this approach, please make sure
you cite the paper in your final paper.

3. Use your intuition.. You are more than welcome to try out your own approach. Again,
whatever approach you try does not need to work well.

2.3 Paper Specifications

The deliverable for this assignment will be a short (3 pages, single spaced including figures) paper
that describes what you tried, why you tried it and what you learned from it. In particular,
your paper should address the following questions.

1. Describe your approach to creating an assembler. Please be as specific as possible in
describing your approach and why/how you chose this particular approach. You may also
include information about things you initially tried, but that didn’t work before you tried
something else.

Page 2

CS 342: Bioinformatics
HWG6 - Assembly Programming Project - Part 2 Spring 2020

2. What modification to your data structures for storing the De Bruijn graph were necessary?
For example, maybe you had to change between storing multi-edges as separate edges to
just a single edge with a multiplicity. Maybe you needed to add a new data structure that
kept track of which edges corresponded to each read. Etc.

3. How well did your approach work (on both error-free data and data with errors)? Use
data to support your conclusions. For example, inclusion of plots or figures (or
specific N50, L50 or other scoring metrics) may be useful here. Can you explain why
your approach either worked well or worked poorly? Conjectures are also reasonable
here if you aren’t sure why your approach performed the way it did. At a minimum,
your analysis should include your N50 and L50 scores for different values of k for the
two datasets you created in part 1 of this assignment (sample_c12_r 50_e0.00.txt and
sample_c12 r 50_e0.01.txt).

4. What did you learn from this assignment? Please spend some time reflecting on what was
interesting or challenging with this assignment and report back.

2.4 Optional Extensions

There are a number of additional features that you may add to your simulation and assembly
programs. If you choose to implement extra features, please make sure to discuss them in your
write-up. Here are a few ideas of extra features you could implement:

e Improving the visualizations created by your assembler can often times be useful. If you
did the extra credit in HW5, you could modify the DOT file you created so that the DOT
file of your De Bruijn graph highlights (with color) the paths in the graph that corre-
spond to your assembled contigs. You could also make your program output a different
type of visualization called a contig map where reads are “aligned” to their corresponding
place in each contig. For instance, the output of such a file for a single contig GTGGACCTAA
and 4 reads might look like the following. (This type of output really useful for debugging).

G A C C T A A
G

=3 s A
QOQ

A C
A C C T A
C C T A A

Qo0

e Make your simulator and assembler handle double stranded genomes (so, reads may come
from either strand).

e Anything else you think of that would be a good improvement.

3 What to hand in

Please hand in to Moodle a zip file containing all of the following:

1. Your short paper formatted as a PDF.
2. The Python scripts as described above, and any other code you wrote to make it all work.
3. A README that explains the following;:

e How to compile your code (if necessary) and any dependencies (i.e., Biopython).

Page 3

CS 342: Bioinformatics
HWG6 - Assembly Programming Project - Part 2 Spring 2020

e A description of any known bugs.
e Any major design decisions that may affect the output of your programs.
e The names of anyone you discussed the project with and any outside resources you

consulted when writing the code.

If you are working in a partnership, only one partner needs to turn in the code, but make
sure that both your names are clearly indicated in both the code and the accompanying

paper.

4 Grading

e Code Specifications (4 points) - Does your code adhere to the exact specifications
outlined above? This includes, does it compute N50 and L50 correctly? Do you include a
README with the requested information?

e Paper (16 points) - Your paper will be graded according to the rubric on the following
page.

Page 4

Bioinformatics

CS 342:

Spring 2020

HWG6 - Assembly Programming Project - Part 2

‘SBUIPRAI I0 SUOISSTD
-STp SSe[D Ul 0) IIR(SUOI)
-0oUU0d A0y Ssoyeul ‘olow
-I9U)INy pur ‘pepnour sI
SUISUL[[RYD Sem jeym pur
pouIed] sem jeym [joq Jo
sisATeue se juoredde st uory)

‘pepi
-Ur ST SULSUS[[RYD SeM Jeym
pue peuIes] Ssem JRUM
10q JO SISATeuR Se JULpI

ydep
QUIOS SYO®[SUISUS[[RYD Sem
1M IO POUIRI] SBM JeUMm
I9}10 JO SISATeUR Jnq ‘Juap

‘ssooo1d
oy} SunLmp pouresd] JIo
SUISUL[[RYD SeM JRUM
UO UOIJOdPdI Paflelsap
® JuesoId jou Seop pur

-0opgol doop JO OOULPIAY | -Ad SI UOIJOSJSI 9JRIOPOJN | -1Ad ST UOIJOS[Sl oWOG | MO[[RYS SI SISATRUY uoI109gey
UOY)LIM ATTRI[D ‘[reI9p JUSIOIPNS

pue ‘ySnoioy} ‘peuosesl SYOR[10 Ppopnour jou SI

[PM ST oM YIOM 1 UpPIp "S[Ie19p SWIOS SYOR[| [[oM YIOM },UPIP IO POyIOM

I0 poIom o) yoroadde | [[om YIom 1 UPIP I0 poyiom | Ioyjw yoeoidde oyj Aym

oy Aym jo uondumoso(] | oy yoeordde o) Aym jo | jo uondrosa(g "SwIre|o

"SOOUOPIAD JO Ajorres e AQ | uonduoso(] -eouoprao Aq | osor) dn Juryorq 90USPIAD

dn pexorq ‘ejep gururejuod | dn poxoeq ‘ejep SUIUIRIUOD | 9J2I0U0D JUSIOIPNS SHOR]

JIOLId PUB 09I-IOL® UO | IOLI® PUR 00IJ-I0LD UO | ng ‘“ejep SUIUIBIUOD IOLID

yoeordde oy) jo oeouew | yoeoidde oy} JO odURW | PUBR 99IJ-I0LD [jO(UO

-10j1ed a9y} Jnoqe suots | -10ped oYl Jnoge suols | soueuniojed jo uordros

-N[OUO0D SB [[oM SB S9I00S | -N[OU0D SB [[oM SB SOI0JS | -Op [BIOUSS ® PUR SOI00S “9STo O[I3] INQ ‘S9I00S

0GT Pue (OGN posenbar | 0¢T pue (OGN Polsenbar | 0¢T pue (OGN poisenbar | G pue OGN peojsenbai 9ouURWLIOJIDJ

U} sopnpul SISA[RUY | Y} Sopn[oul SISA[RUY | U} Sopnul SISA[RUY | 91} sopuoul SsIsAfeuy | jJo sIsATeuy

"SoIM) "SOIMN OIS

-ONIJS BJRP JO 9OIOYD DU | IR JO 9DI0YD S} SUIPND

-ods oy} SUIPNOUL ‘POpoolu | -UI ‘Popodll dIom SUOIJeIYl "ATes "ATeSS9

9Iom SUOIJROYIPOW dS9Y) | -POUTL 99} AUM JO SUOIJRU | -S909U OIoM SUOIIROYIPOUW | -09U SIoM SUOIYRIYIPOUT

Aym jo suorjeue(dxe Iesp | -ev[dxe Ies[d Aq poruedwod | 9soy) Aym uo uorjeur[dxe | 9soy) Aym JO SuUOI)RU

Aq porweduwooor sAemfe are | -0 st qred jsowr oY) IOJ | Ied[o SYoe[INg ‘Iopeal | -v[dXe UIRIUOD J0U S90P

pue Iopeol ® AQ o[qRPUR)S | pUe Iopedl © AQ o[qepur)s | oy} AQq 1I0Je OWOS [IM | PUR ‘puURISIOPUN O} PIRY

-Iopun A[ISed 9IR SUOI} | -Iopun A[[RISUSS SI SUOI) | 9[qepUR)SIOPUN ST SUOI} | pue ongea SI SUOIRD SUOI)edYIPOIA

-eoyipowr Jo uondLoss]

-eoyipowr jo uondrioss(y

-eoyipowr jo uondrIoss(y

-gipowr Jo uON)dLIdS9(]

aanjonayg ejre(

‘pourerdxo
A[ySnoroy) pue A[Ies[d SI
uasoyo sem yoeordde Aym
Ioj uoryeanoly yoeoxdde
oSOy 9y} pulyeq s[rejop
KoY [[e PU® MOIAIOAO PROIQ
e sopraoxd uornydriosa(g

"PoOqLIOSOp
A[IRo[0 10 ATUSNOIY} J0U SI
uosoyo sem tpeordde siy)y
Aqm puIyeq UOI}eAIjOU IO
S[e1op IOUTW oWOS FUIYIR]
SI 9Nq ‘MOIAIOAO PROIQ
e sopraoad uorydriosa(g

"TOSOTD SeM
yoroadde sy} Aym purgoq
UOIIRAIJOWL O} IO S[IRIDP
Aoy owos JUuINoe[IOY}
SI 9Nq ‘MOIAIOAO PROIQ
e sopraoxd uonydrioss(]

MOS0 SeM
yoeoxdde sy} Aym puryg
-9 UOIJRAIOWL IO S[Ie}
-op Aoy Auewr Juryoe|
SI INQ ‘MIIAISAO PROI(
e sopraoxd uorydriosa(]

uor}drios
-9 Jo[quIassy

JUL[EIXH -

pPooyH - ¢

g -g

100d - T

Page 5

	Project Overview
	Project Specifications
	Assembler Specifications
	How to Design an Assembler?
	Paper Specifications
	Optional Extensions

	What to hand in
	Grading

